Pregunta
upstudy study bank question image url

8) Determine if the lengths 3,9 , and 10 form an acute, right, or obtuse triangle, or if they do-not form a triangle at all. not a triangle acute right obtuse

Ask by Mcfarlane Riley. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The triangle with sides 3, 9, and 10 is an obtuse triangle.

Solución

To determine whether the lengths **3, 9, and 10** form an acute, right, or obtuse triangle (or do not form a triangle at all), follow these steps: ### 1. **Check the Triangle Inequality Theorem** A set of three lengths can form a triangle if the sum of any two sides is greater than the third side. - **3 + 9 > 10?** \( 12 > 10 \) → **True** - **3 + 10 > 9?** \( 13 > 9 \) → **True** - **9 + 10 > 3?** \( 19 > 3 \) → **True** Since all three conditions are true, the lengths **3, 9, and 10** can form a triangle. ### 2. **Determine the Type of Triangle** To determine whether the triangle is acute, right, or obtuse, use the **Pythagorean Theorem**: - Let **c** be the longest side. In this case, \( c = 10 \). - Let **a** and **b** be the other two sides. Here, \( a = 3 \) and \( b = 9 \). Compute \( c^2 \) and \( a^2 + b^2 \): - \( c^2 = 10^2 = 100 \) - \( a^2 + b^2 = 3^2 + 9^2 = 9 + 81 = 90 \) **Compare the two values:** - If \( c^2 = a^2 + b^2 \), the triangle is **right-angled**. - If \( c^2 < a^2 + b^2 \), the triangle is **acute**. - If \( c^2 > a^2 + b^2 \), the triangle is **obtuse**. Here, \( 100 > 90 \), so \( c^2 > a^2 + b^2 \). ### **Conclusion:** The triangle with sides **3, 9, and 10** is an **obtuse** triangle. **Answer:** **obtuse**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine if the lengths 3, 9, and 10 can form a triangle, we can use the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the remaining side. Here, 3 + 9 = 12, which is greater than 10; 3 + 10 = 13, which is greater than 9; and 9 + 10 = 19, which is greater than 3. Since all conditions are satisfied, these sides do indeed form a triangle! Next, to classify the triangle, we utilize the Pythagorean theorem. If the square of the longest side (10) is greater than the sum of the squares of the other two sides (3 and 9), then it's an obtuse triangle. Calculating: 10² = 100 and 3² + 9² = 9 + 81 = 90. Since 100 > 90, this triangle is obtuse!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad