Question
Multiply. Write your answer in simplest form. \( \sqrt{40} \cdot \sqrt{11} \)
Ask by Turner Fuentes. in the United States
Jan 24,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\( 2\sqrt{110} \)
Solution
To multiply \( \sqrt{40} \) and \( \sqrt{11} \) and express the result in its simplest form, follow these steps:
1. **Use the Property of Square Roots**:
\[
\sqrt{a} \cdot \sqrt{b} = \sqrt{a \times b}
\]
Applying this property:
\[
\sqrt{40} \cdot \sqrt{11} = \sqrt{40 \times 11} = \sqrt{440}
\]
2. **Simplify \( \sqrt{440} \)**:
Factorize 440 to find any perfect squares:
\[
440 = 4 \times 110
\]
Since 4 is a perfect square (\( 2^2 \)):
\[
\sqrt{440} = \sqrt{4 \times 110} = \sqrt{4} \times \sqrt{110} = 2 \times \sqrt{110}
\]
3. **Final Answer**:
The expression \( \sqrt{40} \cdot \sqrt{11} \) simplified is:
\[
2\sqrt{110}
\]
**Answer:** \( 2\sqrt{110} \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To multiply these square roots, we can use the property that \( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \). So, \( \sqrt{40} \cdot \sqrt{11} = \sqrt{40 \cdot 11} = \sqrt{440} \). Now, let's simplify \( \sqrt{440} \). First, we can factor \( 440 \) into its prime factors: \( 440 = 4 \cdot 110 = 4 \cdot 10 \cdot 11 = 2^2 \cdot 2 \cdot 5 \cdot 11 \). Since \( \sqrt{4} = 2 \), we have \( \sqrt{440} = \sqrt{4 \cdot 110} = 2\sqrt{110} \). Thus, the final answer is \( 2\sqrt{110} \).