Question
upstudy study bank question image url

\( \therefore 0 \tan ^ { 2 } 30 ^ { \circ } - \cos ^ { 2 } 60 ^ { \circ } + x \cot ^ { 2 } 30 ^ { \circ } = 3 \)

Ask by Hilton Salazar. in Thailand
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( x = \frac{13}{12} \)

Solution

การแก้สมการนี้ เราจะเริ่มต้นด้วยการแทนที่ค่าของ \(\tan 30^\circ\) และ \(\cot 30^\circ\) ลงในสมการ \(\tan 30^\circ = \frac{1}{\sqrt{3}}\) และ \(\cot 30^\circ = \sqrt{3}\) เมื่อแทนค่าเหล่านี้ลงในสมการ เราจะได้: \(0 \cdot \left(\frac{1}{\sqrt{3}}\right)^2 - \cos^2 60^\circ + x \cdot (\sqrt{3})^2 = 3\) ลดความซับซ้อนของสมการ: \(0 - \cos^2 60^\circ + 3x = 3\) \(3x = 3 + \cos^2 60^\circ\) \(3x = 3 + \frac{1}{4}\) (เนื่องจาก \(\cos 60^\circ = \frac{1}{2}\)) \(3x = \frac{13}{4}\) \(x = \frac{13}{12}\) ดังนั้น ค่าของ \(x\) คือ \(\frac{13}{12}\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Let's break it down a bit! First, we know that \( \tan 30^\circ = \frac{1}{\sqrt{3}} \), so \( \tan^2 30^\circ = \frac{1}{3} \) and \( \cot^2 30^\circ = 3 \). Additionally, \( \cos 60^\circ = \frac{1}{2} \), thus \( \cos^2 60^\circ = \frac{1}{4} \). Now, substituting these values into the equation: \[ 0 \cdot \tan^2 30^\circ - \frac{1}{4} + x \cdot 3 = 3 \] This simplifies to: \[ -x \cdot \frac{1}{4} + 3x = 3 \] Combine the terms and isolate \( x \): \[ 3x - \frac{1}{4} = 3 \] Now just solve for \( x \). Adding \( \frac{1}{4} \) to both sides: \[ 3x = 3 + \frac{1}{4} = \frac{13}{4} \] Therefore, divide by 3: \[ x = \frac{13}{12}. \] So the solution is \( x = \frac{13}{12} \).

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy