30) \( \left(y^{3}-7 x^{4} y^{4}\right)+\left(-10 x^{4} y^{3}+6 y^{3}+4 x^{4} y^{4}\right)-\left(x^{4} y^{3}+6 x^{4} y^{4}\right) \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To simplify the expression, let’s first combine like terms step by step: 1. Start by writing the expression: \[ (y^{3} - 7x^{4}y^{4}) + (-10x^{4}y^{3} + 6y^{3} + 4x^{4}y^{4}) - (x^{4}y^{3} + 6x^{4}y^{4}). \] 2. Distribute the negative sign in the last term: \[ = y^{3} - 7x^{4}y^{4} - 10x^{4}y^{3} + 6y^{3} + 4x^{4}y^{4} - x^{4}y^{3} - 6x^{4}y^{4}. \] 3. Now, combine like terms. Group \(y^{3}\) terms and \(x^{4}y^{4}\) terms together: - For \(y^{3}\): \[ y^{3} + 6y^{3} - 10x^{4}y^{3} - x^{4}y^{3} = (1 + 6 - 10 - 1)x^{4}y^{3} = (-4)x^{4}y^{3}. \] - For \(x^{4}y^{4}\): \[ -7x^{4}y^{4} + 4x^{4}y^{4} - 6x^{4}y^{4} = (-7 + 4 - 6)x^{4}y^{4} = (-9)x^{4}y^{4}. \] 4. Combine everything to get the final simplified expression: \[ -4x^{4}y^{3} - 9x^{4}y^{4}. \] Thus, the simplified expression is: \[ -4x^{4}y^{3} - 9x^{4}y^{4}. \]