Find the exact value of \( \tan \left[2 \cos ^{-1}\left(-\frac{3}{5}\right)\right] \) \( \tan \left[2 \cos ^{-1}\left(-\frac{3}{5}\right)\right]=\square \) (Simplify your answer. Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find \( \tan \left[2 \cos ^{-1}\left(-\frac{3}{5}\right)\right] \), we start by letting \( \theta = \cos^{-1}\left(-\frac{3}{5}\right) \). This means \( \cos(\theta) = -\frac{3}{5} \). We can use the identity for \( \tan(2\theta) \): \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Next, we need to find \( \tan(\theta) \). From the identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \), we have: \[ \sin^2(\theta) + \left(-\frac{3}{5}\right)^2 = 1 \] \[ \sin^2(\theta) + \frac{9}{25} = 1 \] \[ \sin^2(\theta) = 1 - \frac{9}{25} = \frac{16}{25} \] So, \( \sin(\theta) = \frac{4}{5} \) (we use the positive root since \( \theta \) corresponds to the range where sine is positive). Now we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{4}{5}}{-\frac{3}{5}} = -\frac{4}{3} \] Next, substituting this into the double angle formula for tangent: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} = \frac{2\left(-\frac{4}{3}\right)}{1 - \left(-\frac{4}{3}\right)^2} \] Calculating \( \tan^2(\theta) \): \[ \tan^2(\theta) = \left(-\frac{4}{3}\right)^2 = \frac{16}{9} \] Now substituting this back: \[ \tan(2\theta) = \frac{-\frac{8}{3}}{1 - \frac{16}{9}} = \frac{-\frac{8}{3}}{\frac{9}{9} - \frac{16}{9}} = \frac{-\frac{8}{3}}{-\frac{7}{9}} = \frac{-8}{3} \cdot \frac{-9}{7} \] Simplifying this gives: \[ \tan(2\theta) = \frac{72}{21} = \frac{24}{7} \] Therefore, the exact value is: \[ \tan \left[2 \cos^{-1}\left(-\frac{3}{5}\right)\right] = \frac{24}{7} \]