Question

Ask by Fuentes Griffin. in Russia
Feb 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Решение уравнения приводит к .

Solution

Рассмотрим уравнение:
  lg(x² – 17) = lg(x + 3).
  1. Поскольку логарифмы с одинаковыми основаниями равны, если их аргументы положительны, можно приравнять выражения:
      x² – 17 = x + 3.
  2. Приведём уравнение к стандартному виду:
      x² – x – 20 = 0.
  3. Найдём корни квадратного уравнения:
      (x – 5)(x + 4) = 0,
      откуда получаем x = 5 и x = -4.
  4. Проверим условие допустимости (аргументы логарифмов должны быть > 0):
      – Для функции lg(x + 3) необходимо, чтобы x + 3 > 0, то есть x > -3.
       • При x = 5: 5 + 3 = 8 > 0.
       • При x = -4: -4 + 3 = -1 < 0, что недопустимо.
      – Для lg(x² – 17) необходимо, чтобы x² – 17 > 0:
       • При x = 5: 25 – 17 = 8 > 0.
       • При x = -4: 16 – 17 = -1 < 0.
  5. Таким образом, единственным решением является x = 5.
Ответ: x = 5.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equation , we can utilize the property of logarithms which states that if , then . Therefore, we can equate the arguments:
Rearranging gives us:
Factoring this quadratic equation, we have:
Thus, the possible solutions are:
However, we need to ensure that these values satisfy the original logarithmic equations, which must have positive arguments.
  • For :
    • The argument .
    • The argument .
  • For :
    • The argument (invalid).
    • The argument (invalid).
Since leads to negative arguments, it’s ruled out. Thus, the final valid solution is:

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy