Question

\( \lim _{x \rightarrow +\infty } (x(\sqrt {\frac{x}{x+1}}-1)) \)

Ask by Craig Osborne. in Romania
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Limita este \(-\frac{1}{2}\).

Solution

Pentru a calcula limita: \[ \lim _{x \rightarrow +\infty } \left( x\left(\sqrt {\frac{x}{x+1}} - 1\right) \right) \] **Pasul 1:** Simplificăm expresia sub rădăcină: \[ \sqrt{\frac{x}{x+1}} = \sqrt{\frac{1}{1 + \frac{1}{x}}} \] Pentru \( x \) foarte mare, putem aproxima: \[ \sqrt{\frac{1}{1 + \frac{1}{x}}} \approx 1 - \frac{1}{2x} \] **Pasul 2:** Substituim această aproximare în expresia originală: \[ \sqrt{\frac{x}{x+1}} - 1 \approx \left(1 - \frac{1}{2x}\right) - 1 = -\frac{1}{2x} \] **Pasul 3:** Înmulțim rezultatul cu \( x \): \[ x \left( -\frac{1}{2x} \right) = -\frac{1}{2} \] **Concluzie:** \[ \lim _{x \rightarrow +\infty } \left( x\left(\sqrt {\frac{x}{x+1}} - 1\right) \right) = -\frac{1}{2} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the limit \[ \lim _{x \rightarrow +\infty } \left(x\left(\sqrt {\frac{x}{x+1}}-1\right)\right), \] we start by simplifying the expression inside the limit. First, we rewrite \(\sqrt{\frac{x}{x+1}}\): \[ \sqrt{\frac{x}{x+1}} = \sqrt{\frac{x}{x(1+\frac{1}{x})}} = \sqrt{\frac{1}{1+\frac{1}{x}}}. \] As \(x\) approaches infinity, the term \(\frac{1}{x}\) approaches \(0\). Therefore, \[ \sqrt{1+\frac{1}{x}} \to 1 \implies \sqrt{\frac{x}{x+1}} \to \sqrt{1} = 1. \] Next, let's rewrite the limit expression: \[ \sqrt{\frac{x}{x+1}} - 1 = \frac{\sqrt{\frac{x}{x+1}} - 1}{1} = \frac{\frac{x}{x+1} - 1}{\sqrt{\frac{x}{x+1}} + 1} = \frac{\frac{x - (x + 1)}{x + 1}}{\sqrt{\frac{x}{x+1}} + 1} = \frac{\frac{-1}{x + 1}}{\sqrt{\frac{x}{x+1}} + 1}. \] Now, we can multiply this form by \(x\): \[ x\left(\sqrt{\frac{x}{x+1}} - 1\right) = x \cdot \frac{-1}{(x + 1)(\sqrt{\frac{x}{x+1}} + 1)}. \] This leads to \[ \frac{-x}{(x + 1)(\sqrt{\frac{x}{x+1}} + 1)}. \] As \(x \to +\infty\): 1. The term \(x + 1 \sim x\). 2. The term \(\sqrt{\frac{x}{x+1}} \sim \sqrt{\frac{x}{x}} = 1\). 3. Therefore, \(\sqrt{\frac{x}{x+1}} + 1 \sim 2\). So we have: \[ \lim _{x \rightarrow +\infty } \frac{-x}{(x + 1)(\sqrt{\frac{x}{x+1}} + 1)} \sim \frac{-x}{x \cdot 2} = \frac{-1}{2}. \] Thus, the limit is: \[ \boxed{-\frac{1}{2}}. \]

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy