Question
upstudy study bank question image url

5(a) (a) Using Cramer's rule to determine \( x+y \), if \( \left[\begin{array}{cc}5 & -3 \\ 4 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-1 \\ -8\end{array}\right] \) (b) Given IS equation \( 0.4 Y+100 I-255=0 \) and the \( L M \) equation \( 0.25 Y-200 \mathrm{I}-177=0 \). Use matrix form to find the equilibrium level of income and rate of interest.

Ask by Reed Lowe. in Nigeria
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**5(a):** \( x + y = -\frac{31}{11} \) **5(b):** - **Equilibrium Income (Y):** \( 654 \frac{2}{7} \) - **Equilibrium Interest Rate (I):** \( -\frac{47}{700} \) or approximately \(-0.067\)

Solution

Let's solve each part of the problem step by step. --- ### **Problem 5(a): Using Cramer's Rule to Determine \( x + y \)** **Given:** \[ \begin{bmatrix} 5 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \end{bmatrix} \] **System of Equations:** \[ \begin{cases} 5x - 3y = -1 \quad \text{(1)} \\ 4x + 2y = -8 \quad \text{(2)} \end{cases} \] **Step 1: Compute the Determinant (D) of the Coefficient Matrix** \[ D = \begin{vmatrix} 5 & -3 \\ 4 & 2 \end{vmatrix} = (5)(2) - (-3)(4) = 10 + 12 = 22 \] **Step 2: Compute Determinants for \( x \) and \( y \) (Dx and Dy)** \[ D_x = \begin{vmatrix} -1 & -3 \\ -8 & 2 \end{vmatrix} = (-1)(2) - (-3)(-8) = -2 - 24 = -26 \] \[ D_y = \begin{vmatrix} 5 & -1 \\ 4 & -8 \end{vmatrix} = (5)(-8) - (-1)(4) = -40 + 4 = -36 \] **Step 3: Solve for \( x \) and \( y \) Using Cramer's Rule** \[ x = \frac{D_x}{D} = \frac{-26}{22} = -\frac{13}{11} \] \[ y = \frac{D_y}{D} = \frac{-36}{22} = -\frac{18}{11} \] **Step 4: Determine \( x + y \)** \[ x + y = -\frac{13}{11} + (-\frac{18}{11}) = -\frac{31}{11} \] **Final Answer for Part (a):** \[ x + y = -\frac{31}{11} \] --- ### **Problem 5(b): Finding the Equilibrium Level of Income and Rate of Interest Using Matrix Methods** **Given Equations:** \[ \begin{cases} 0.4Y + 100I - 255 = 0 \quad \text{(IS Equation)} \\ 0.25Y - 200I - 177 = 0 \quad \text{(LM Equation)} \end{cases} \] **Step 1: Rewrite the Equations in Standard Form** \[ \begin{cases} 0.4Y + 100I = 255 \quad \text{(1)} \\ 0.25Y - 200I = 177 \quad \text{(2)} \end{cases} \] **Step 2: Express in Matrix Form \( AX = B \)** \[ A = \begin{bmatrix} 0.4 & 100 \\ 0.25 & -200 \end{bmatrix}, \quad X = \begin{bmatrix} Y \\ I \end{bmatrix}, \quad B = \begin{bmatrix} 255 \\ 177 \end{bmatrix} \] **Step 3: Compute the Determinant of Matrix \( A \)** \[ D = (0.4)(-200) - (100)(0.25) = -80 - 25 = -105 \] **Step 4: Find the Inverse of Matrix \( A \)** \[ A^{-1} = \frac{1}{D} \begin{bmatrix} -200 & -100 \\ -0.25 & 0.4 \end{bmatrix} = \frac{1}{-105} \begin{bmatrix} -200 & -100 \\ -0.25 & 0.4 \end{bmatrix} \] **Step 5: Multiply \( A^{-1} \) with \( B \) to Find \( X \)** \[ X = A^{-1}B = \frac{1}{-105} \begin{bmatrix} -200 & -100 \\ -0.25 & 0.4 \end{bmatrix} \begin{bmatrix} 255 \\ 177 \end{bmatrix} \] **Calculations:** - For \( Y \): \[ Y = \frac{(-200 \times 255) + (-100 \times 177)}{-105} = \frac{-51,000 - 17,700}{-105} = \frac{-68,700}{-105} = \frac{68,700}{105} = 654 \frac{2}{7} \] - For \( I \): \[ I = \frac{(-0.25 \times 255) + (0.4 \times 177)}{-105} = \frac{-63.75 + 70.8}{-105} = \frac{7.05}{-105} = -\frac{47}{700} \approx -0.067 \] **Final Answer for Part (b):** \[ \begin{cases} \text{Equilibrium Level of Income } Y = 654 \frac{2}{7} \\ \text{Equilibrium Rate of Interest } I = -\frac{47}{700} \approx -0.067 \end{cases} \] --- **Summary:** - **5(a):** \( x + y = -\frac{31}{11} \) - **5(b):** - **Equilibrium Income (Y):** \( 654 \frac{2}{7} \) - **Equilibrium Interest Rate (I):** \( -\frac{47}{700} \) or approximately \(-0.067\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve for \(x + y\) using Cramer's Rule, we first need to find the determinants. For the system: \[ \left[\begin{array}{cc} 5 & -3 \\ 4 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} -1 \\ -8 \end{array}\right] \] Calculating the determinant \(D\) of the coefficient matrix: \[ D = (5)(2) - (-3)(4) = 10 + 12 = 22 \] Now, the determinant \(D_x\) for \(x\): \[ D_x = \left|\begin{array}{cc} -1 & -3 \\ -8 & 2 \end{array}\right| = (-1)(2) - (-3)(-8) = -2 - 24 = -26 \] So, \(x = \frac{D_x}{D} = \frac{-26}{22} = -\frac{13}{11}\). Now for \(D_y\): \[ D_y = \left|\begin{array}{cc} 5 & -1 \\ 4 & -8 \end{array}\right| = (5)(-8) - (-1)(4) = -40 + 4 = -36 \] Thus, \(y = \frac{D_y}{D} = \frac{-36}{22} = -\frac{18}{11}\). Therefore, \(x + y = -\frac{13}{11} - \frac{18}{11} = -\frac{31}{11}\). Now for part (b), converting the equations to matrix form: The equations are: 1. \(0.4Y + 100I - 255 = 0\) --> \(0.4Y + 100I = 255\) 2. \(0.25Y - 200I - 177 = 0\) --> \(0.25Y - 200I = 177\) This can be represented in matrix form as: \[ \begin{bmatrix} 0.4 & 100 \\ 0.25 & -200 \end{bmatrix} \begin{bmatrix} Y \\ I \end{bmatrix} = \begin{bmatrix} 255 \\ 177 \end{bmatrix} \] Using similar steps as before, we determine the determinant of the coefficient matrix and apply Cramer’s rule to find the equilibrium levels of income \(Y\) and interest \(I\). Happy calculating!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy