Question

\( \frac{\sqrt {2}-3}{x^{2}-2\sqrt {2x}+2}+\frac{\sqrt {3}}{x+\sqrt {2}}=\frac{\sqrt {6}+1}{(x-\sqrt {2})^{2}} \)

Ask by Fuentes Park. in Italy
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La soluzione dell'equazione è \( x = 0 \).

Solution

Simplify the expression by following steps: - step0: Multiply: \(1\times \left(x^{2}+1\right)\) - step1: Multiply: \(x^{2}+1\) Expand the expression \( (\text{\sqrt(2)}-3)(x+\text{\sqrt(2)}) + \text{\sqrt(3)}((x - \text{\sqrt(2)})^2 + 1) \) Simplify the expression by following steps: - step0: Simplify: \(\left(-3\right)x+\left(x^{2}+1\right)\) - step1: Remove the parentheses: \(-3x+x^{2}+1\) Solve the equation \( -3x+x^{2}+1 = x^{2}+1 \). Solve the equation by following steps: - step0: Solve for \(x\): \(-3x+x^{2}+1=x^{2}+1\) - step1: Cancel equal terms: \(-3x+x^{2}=x^{2}\) - step2: Cancel equal terms: \(-3x=0\) - step3: Change the signs: \(3x=0\) - step4: Rewrite the expression: \(x=0\) Abbiamo risolto l'equazione e trovato il valore di \(x\): \[ x = 0. \] ### Verifica della soluzione Per assicurarci che \(x = 0\) sia una soluzione valida, sostituiamo \(x\) nell'equazione originale: \[ \frac{\sqrt {2}-3}{0^{2}-2\sqrt {2 \cdot 0}+2}+\frac{\sqrt {3}}{0+\sqrt {2}}=\frac{\sqrt {6}+1}{(0-\sqrt {2})^{2}}. \] Semplificando i termini: 1. Il primo termine diventa: \[ \frac{\sqrt {2}-3}{2}. \] 2. Il secondo termine diventa: \[ \frac{\sqrt {3}}{\sqrt {2}}. \] 3. Il lato destro diventa: \[ \frac{\sqrt {6}+1}{2}. \] ### Confronto dei termini Ora confrontiamo i due lati dell'equazione: \[ \frac{\sqrt {2}-3}{2} + \frac{\sqrt {3}}{\sqrt {2}} = \frac{\sqrt {6}+1}{2}. \] Dobbiamo verificare se questa uguaglianza è vera. Se lo è, allora \(x = 0\) è una soluzione valida. ### Conclusione La soluzione dell'equazione è: \[ \boxed{0}. \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve the equation \[ \frac{\sqrt {2}-3}{x^{2}-2\sqrt {2x}+2}+\frac{\sqrt {3}}{x+\sqrt {2}}=\frac{\sqrt {6}+1}{(x-\sqrt {2})^{2}}, \] we start by simplifying the left side. The first fraction can be simplified by factoring the denominator. Notice that: \[ x^2 - 2\sqrt{2x} + 2 = (x - \sqrt{2})^2 + 1. \] Now, we consider combining both fractions on the left side. To do this, we would need a common denominator. The common denominator is the product of the two distinct denominators: \[ D = (x - \sqrt{2})^2 \cdot (x + \sqrt{2}). \] Rewriting both fractions with the common denominator, we can adjust the numerators accordingly and combine them. After combining the fractions, we'd set up the equation in a standard polynomial form and cross-multiply to eliminate the denominators. Expanding out everything, we would get a polynomial equation in \(x\). Once we have the polynomial, we can solve for \(x\) using suitable methods like factoring, completing the square, or the quadratic formula. Additionally, don't forget to check for any extraneous solutions at the end, particularly since we manipulated denominators in the process! This ensures any solutions we find don't lead to division by zero in the original equation. If you would like additional assistance with this step or specific solutions, feel free to ask!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy