Question
upstudy study bank question image url

\begin{tabular}{l} Evaluate. Write your answers as fractions. \\ \( -\left(\frac{4}{5}\right)^{4}=\square \) \\ \( \left(-\frac{3}{2}\right)^{2}=\square \) \\ \hline\( \frac{\square}{\square} \) \\ \hline\end{tabular}

Ask by Mejia Munoz. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ -\frac{256}{625}, \quad \frac{9}{4}, \quad -\frac{1024}{5625} \]

Solution

Calculate the value by following steps: - step0: Calculate: \(-\left(\frac{4}{5}\right)^{4}\) - step1: Evaluate the power: \(-\frac{256}{625}\) Calculate or simplify the expression \( (-3/2)^2 \). Calculate the value by following steps: - step0: Calculate: \(\left(\frac{-3}{2}\right)^{2}\) - step1: Rewrite the fraction: \(\left(-\frac{3}{2}\right)^{2}\) - step2: Use the properties of exponents: \(\frac{\left(-3\right)^{2}}{2^{2}}\) - step3: Evaluate the power: \(\frac{9}{2^{2}}\) - step4: Evaluate the power: \(\frac{9}{4}\) Let's evaluate the expressions step by step. 1. **Evaluate \( -\left(\frac{4}{5}\right)^{4} \)**: \[ \left(\frac{4}{5}\right)^{4} = \frac{4^4}{5^4} = \frac{256}{625} \] Therefore, \[ -\left(\frac{4}{5}\right)^{4} = -\frac{256}{625} \] 2. **Evaluate \( \left(-\frac{3}{2}\right)^{2} \)**: \[ \left(-\frac{3}{2}\right)^{2} = \left(-3\right)^{2} \cdot \left(\frac{1}{2}\right)^{2} = \frac{9}{4} \] Now we have: - \( -\left(\frac{4}{5}\right)^{4} = -\frac{256}{625} \) - \( \left(-\frac{3}{2}\right)^{2} = \frac{9}{4} \) 3. **Now, we need to evaluate \( \frac{\square}{\square} \)**: \[ \frac{-\frac{256}{625}}{\frac{9}{4}} = -\frac{256}{625} \cdot \frac{4}{9} = -\frac{256 \cdot 4}{625 \cdot 9} \] Calculating the numerator and denominator: - Numerator: \( 256 \cdot 4 = 1024 \) - Denominator: \( 625 \cdot 9 = 5625 \) Thus, \[ \frac{-\frac{256}{625}}{\frac{9}{4}} = -\frac{1024}{5625} \] Final answers: - \( -\left(\frac{4}{5}\right)^{4} = -\frac{256}{625} \) - \( \left(-\frac{3}{2}\right)^{2} = \frac{9}{4} \) - \( \frac{\square}{\square} = -\frac{1024}{5625} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To evaluate \( -\left(\frac{4}{5}\right)^{4} \), we first calculate \( \left(\frac{4}{5}\right)^{4} \). \[ \left(\frac{4}{5}\right)^{4} = \frac{4^4}{5^4} = \frac{256}{625} \] Now applying the negative sign: \[ -\left(\frac{4}{5}\right)^{4} = -\frac{256}{625} \] Next, we evaluate \( \left(-\frac{3}{2}\right)^{2} \): \[ \left(-\frac{3}{2}\right)^{2} = \left(-\frac{3}{2}\right) \times \left(-\frac{3}{2}\right) = \frac{9}{4} \] Now we substitute these values into the fraction: \[ \frac{-\frac{256}{625}}{\frac{9}{4}} \] To divide fractions, we multiply by the reciprocal: \[ = -\frac{256}{625} \times \frac{4}{9} = -\frac{1024}{5625} \] So, your answers are: - For \( -\left(\frac{4}{5}\right)^{4} = -\frac{256}{625} \) - For \( \left(-\frac{3}{2}\right)^{2} = \frac{9}{4} \) - Therefore, \( \frac{\square}{\square} = \frac{-\frac{256}{625}}{\frac{9}{4}} = -\frac{1024}{5625} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy