\begin{tabular}{l} Evaluate. Write your answers as fractions. \\ \( -\left(\frac{4}{5}\right)^{4}=\square \) \\ \( \left(-\frac{3}{2}\right)^{2}=\square \) \\ \hline\( \frac{\square}{\square} \) \\ \hline\end{tabular}
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To evaluate \( -\left(\frac{4}{5}\right)^{4} \), we first calculate \( \left(\frac{4}{5}\right)^{4} \). \[ \left(\frac{4}{5}\right)^{4} = \frac{4^4}{5^4} = \frac{256}{625} \] Now applying the negative sign: \[ -\left(\frac{4}{5}\right)^{4} = -\frac{256}{625} \] Next, we evaluate \( \left(-\frac{3}{2}\right)^{2} \): \[ \left(-\frac{3}{2}\right)^{2} = \left(-\frac{3}{2}\right) \times \left(-\frac{3}{2}\right) = \frac{9}{4} \] Now we substitute these values into the fraction: \[ \frac{-\frac{256}{625}}{\frac{9}{4}} \] To divide fractions, we multiply by the reciprocal: \[ = -\frac{256}{625} \times \frac{4}{9} = -\frac{1024}{5625} \] So, your answers are: - For \( -\left(\frac{4}{5}\right)^{4} = -\frac{256}{625} \) - For \( \left(-\frac{3}{2}\right)^{2} = \frac{9}{4} \) - Therefore, \( \frac{\square}{\square} = \frac{-\frac{256}{625}}{\frac{9}{4}} = -\frac{1024}{5625} \)