5.) \( \frac{\cos \left(90^{\circ}-2 x\right)}{2-2 \sin (-x) \cdot \cos \left(90^{\circ}+x\right)} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expression \( \frac{\cos \left(90^{\circ}-2 x\right)}{2-2 \sin (-x) \cdot \cos \left(90^{\circ}+x\right)} \), we can use trigonometric identities. The cosine of a complementary angle yields: \[ \cos(90^\circ - 2x) = \sin(2x) \] Next, let's simplify the denominator: \[ \sin(-x) = -\sin(x), \quad \text{and} \quad \cos(90^\circ + x) = -\sin(x) \] Thus, we can rewrite the denominator: \[ 2 - 2 \sin(-x) \cdot \cos(90^\circ + x) = 2 - 2(-\sin(x))(-\sin(x)) = 2 - 2\sin^2(x) \] Using the identity \(1 - \sin^2(x) = \cos^2(x)\), we have: \[ 2 - 2\sin^2(x) = 2(1 - \sin^2(x)) = 2\cos^2(x) \] Now we substitute these back into the original expression: \[ \frac{\sin(2x)}{2\cos^2(x)} \] Using the double angle identity for sine, \(\sin(2x) = 2\sin(x)\cos(x)\), we substitute to get: \[ \frac{2\sin(x)\cos(x)}{2\cos^2(x)} = \frac{\sin(x)}{\cos(x)} = \tan(x) \] Thus, the simplified expression is: \[ \tan(x) \]