Question

\( a=\frac{4x^{2}-1}{2x^{2}-3|x|+1} \)

Ask by Alexander Schneider. in Greece
Jan 20,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Η συνάρτηση \( a = \frac{4x^{2} - 1}{2x^{2} - 3|x| + 1} \) μπορεί να εκφραστεί παραγοντοποιημένα ως: \[ a = \begin{cases} \frac{2x + 1}{x - 1} & \text{για } x \geq 0, \\ \frac{2x - 1}{x + 1} & \text{για } x < 0. \end{cases} \] Σημειώσεις: - Οι σημεία \( x = \frac{1}{2} \) και \( x = -\frac{1}{2} \) πρέπει αποφεύγειν για να διατηρείται η συνάρτηση ορισμένη. - Η συνάρτηση παρουσιάζει ασυνέχειες στα αναφερθέντα σημεία.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

When we dive into the expression \( a=\frac{4x^{2}-1}{2x^{2}-3|x|+1} \), it's interesting to note that the numerator is a difference of squares! You can factor \( 4x^2 - 1 \) as \( (2x-1)(2x+1) \). Now, let’s talk about the denominator. The expression \( 2x^{2}-3|x|+1 \) varies depending on whether \( x \) is positive or negative, as the absolute value affects the linear term. For positive \( x \), it simplifies to \( 2x^2 - 3x + 1 \), whereas for negative \( x \), it becomes \( 2x^2 + 3x + 1 \). This gives you an opportunity to handle each case separately!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy