If \( \sin \theta=\frac{2}{3}, 0<\theta<\frac{\pi}{2} \), find the exact value of each of the following. \( \begin{array}{lll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2}\end{array} \) (d) \( \cos \frac{\theta}{2} \)\( ~ \begin{array}{l}\text { (a) } \sin (2 \theta)=\frac{4 \sqrt{5}}{9} \\ \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=\frac{1}{9} \\ \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\sqrt{\frac{3-\sqrt{5}}{6}} \\ \text { (Type an exact answer, using radicals as needed.) } \\ \text { (d) } \cos \frac{\theta}{2}=\square \\ \text { (Type an exact answer, using radicals as needed.) }\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the values requested, we can start by using some trigonometric identities. First, since \( \sin \theta = \frac{2}{3} \), we can calculate \( \cos \theta \) using the Pythagorean identity: \[ \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{2}{3}\right)^2} = \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}. \] (a) To find \( \sin(2\theta) \): \[ \sin(2\theta) = 2 \sin \theta \cos \theta = 2 \left(\frac{2}{3}\right)\left(\frac{\sqrt{5}}{3}\right) = \frac{4\sqrt{5}}{9}. \] (b) Now for \( \cos(2\theta) \): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left(\frac{\sqrt{5}}{3}\right)^2 - \left(\frac{2}{3}\right)^2 = \frac{5}{9} - \frac{4}{9} = \frac{1}{9}. \] (c) To find \( \sin\left(\frac{\theta}{2}\right) \), we can use: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - \frac{\sqrt{5}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{5}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{5}}{6}}. \] (d) Finally, we can find \( \cos\left(\frac{\theta}{2}\right) \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 + \frac{\sqrt{5}}{3}}{2}} = \sqrt{\frac{\frac{3 + \sqrt{5}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{5}}{6}}. \] Putting it all together, we'll have the exact values: \[ \begin{array}{l} \text{(a) } \sin (2\theta) = \frac{4\sqrt{5}}{9} \\ \text{(b) } \cos (2\theta) = \frac{1}{9} \\ \text{(c) } \sin \frac{\theta}{2} = \sqrt{\frac{3 - \sqrt{5}}{6}} \\ \text{(d) } \cos \frac{\theta}{2} = \sqrt{\frac{3 + \sqrt{5}}{6}}. \end{array} \]