Question
Simplify. Enter a single, simplified rational expression or integer. \[ \frac{1}{5}+\frac{1}{15} \] \[ \frac{1}{3}-\frac{1}{5} \]
Ask by Wade Chan. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\[
\frac{4}{15} \quad \text{and} \quad \frac{2}{15}
\]
Solution
Simplifying each expression:
1. \(\frac{1}{5} + \frac{1}{15}\)
\[
\frac{1}{5} = \frac{3}{15} \quad \text{so} \quad \frac{3}{15} + \frac{1}{15} = \frac{4}{15}
\]
2. \(\frac{1}{3} - \frac{1}{5}\)
\[
\frac{1}{3} = \frac{5}{15} \quad \text{and} \quad \frac{1}{5} = \frac{3}{15} \quad \text{so} \quad \frac{5}{15} - \frac{3}{15} = \frac{2}{15}
\]
**Final Simplified Expressions:**
\[
\frac{4}{15} \quad \text{and} \quad \frac{2}{15}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
To simplify the first expression, we need a common denominator for \( \frac{1}{5} \) and \( \frac{1}{15} \). The least common denominator is 15. \[\frac{1}{5} = \frac{3}{15}\] So, \[\frac{1}{5} + \frac{1}{15} = \frac{3}{15} + \frac{1}{15} = \frac{4}{15}\] For the second expression, the least common denominator for \( \frac{1}{3} \) and \( \frac{1}{5} \) is 15. \[\frac{1}{3} = \frac{5}{15}\] Thus, \[\frac{1}{3} - \frac{1}{5} = \frac{5}{15} - \frac{3}{15} = \frac{2}{15}\] The final simplified expressions are: \[ \frac{4}{15} \] \[ \frac{2}{15} \]