Question
upstudy study bank question image url

\( \begin{array}{l}\text { For the function } f(x)=6 x^{\frac{1}{3}}-2, \text { find } f^{-1}(x) \\ \text { Answer } \\ f^{-1}(x)=\frac{(x+2)^{3}}{6} \\ f^{-1}(x)=\left(\frac{x+2}{6}\right)^{3} \\ f^{-1}(x)=\left(\frac{x}{6}+2\right)^{3}\end{array} \begin{array}{l}f^{-1}(x)=\frac{x^{3}}{6}+2\end{array} \).

Ask by Ryan Gibson. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La función inversa es \( f^{-1}(x) = \left( \frac{x + 2}{6} \right)^3 \).

Solution

Para encontrar la función inversa \( f^{-1}(x) \) de la función dada \( f(x) = 6x^{\frac{1}{3}} - 2 \), seguiremos los siguientes pasos: 1. **Intercambiar \( x \) e \( y \):** \[ y = 6x^{\frac{1}{3}} - 2 \] Intercambiamos \( x \) e \( y \): \[ x = 6y^{\frac{1}{3}} - 2 \] 2. **Resolver para \( y \):** \[ x + 2 = 6y^{\frac{1}{3}} \] \[ \frac{x + 2}{6} = y^{\frac{1}{3}} \] 3. **Elevar al cubo ambos lados para despejar \( y \):** \[ \left( \frac{x + 2}{6} \right)^3 = y \] Por lo tanto, la función inversa es: \[ f^{-1}(x) = \left( \frac{x + 2}{6} \right)^3 \] **Respuesta Final:** \[ f^{-1}(x) = \left( \frac{x + 2}{6} \right)^3 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the inverse of the function \( f(x) = 6x^{\frac{1}{3}} - 2 \), we start by setting \( y = f(x) \) which gives us the equation \( y = 6x^{\frac{1}{3}} - 2 \). Rearranging this, we add 2 to both sides to get \( y + 2 = 6x^{\frac{1}{3}} \). Then by dividing both sides by 6, we find \( x^{\frac{1}{3}} = \frac{y + 2}{6} \). Finally, we cube both sides to solve for \( x \), leading us to \( x = \left(\frac{y + 2}{6}\right)^3 \). Therefore, the inverse function is \( f^{-1}(x) = \left(\frac{x + 2}{6}\right)^3 \). Want to give your brain a workout while practicing? Try verifying the inverse by checking if \( f(f^{-1}(x)) = x \) holds true! Substitute \( f^{-1}(x) \) back into the original function and simplify to see if you retrieve \( x \) again. This method not only builds confidence in your calculations but also highlights the beautiful symmetry in functions and their inverses.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy