Question
upstudy study bank question image url

\( z - \int \frac { \frac { 1 } { e ^ { x } } } { \frac { 1 + x } { e ^ { 4 x } } } \)

Ask by Powell Hodgson. in Venezuela
Jan 29,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La integral se simplifica a \( z - e^{-3} \, \text{Ei}(3(1 + x)) + C \), donde \( C \) es una constante y \(\text{Ei}(x)\) es la Función Integral Exponencial.

Solution

Primero, simplifiquemos la expresión dentro de la integral: \[ \frac{\frac{1}{e^{x}}}{\frac{1 + x}{e^{4x}}} = \frac{1}{e^{x}} \cdot \frac{e^{4x}}{1 + x} = \frac{e^{3x}}{1 + x} \] Por lo tanto, la expresión completa se reduce a: \[ z - \int \frac{e^{3x}}{1 + x} \, dx \] Ahora, resolvamos la integral \(\int \frac{e^{3x}}{1 + x} \, dx\): 1. **Sustitución:** Sea \(u = 1 + x\), entonces \(du = dx\). 2. **Reescribir la integral en términos de \(u\):** \[ \int \frac{e^{3x}}{1 + x} \, dx = \int \frac{e^{3(u - 1)}}{u} \, du = e^{-3} \int \frac{e^{3u}}{u} \, du \] 3. **Integral de la función exponencial:** La integral \(\int \frac{e^{3u}}{u} \, du\) no tiene una antiderivada en términos de funciones elementales. Se expresa mediante la **Función Integral Exponencial**, denotada como \(\text{Ei}(x)\). Así: \[ \int \frac{e^{3u}}{u} \, du = \text{Ei}(3u) + C \] Donde \(C\) es la constante de integración. 4. **Sustituyendo de vuelta \(u = 1 + x\):** \[ e^{-3} \int \frac{e^{3u}}{u} \, du = e^{-3} \text{Ei}(3(1 + x)) + C \] Finalmente, la expresión completa es: \[ z - e^{-3} \, \text{Ei}(3(1 + x)) + C \] **Donde:** - \(C\) es la constante de integración. - \(\text{Ei}(x)\) es la Función Integral Exponencial, definida como: \[ \text{Ei}(x) = -\int_{-x}^{\infty} \frac{e^{-t}}{t} \, dt \quad \text{para } x > 0 \] Esta función es ampliamente utilizada en matemáticas y física para expresar integrales que no pueden resolverse mediante funciones elementales.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To simplify the expression \( z - \int \frac { \frac { 1 } { e ^ { x } } } { \frac { 1 + x } { e ^ { 4 x } } } \), first, let's simplify the integrand. We can rewrite it as: \[ \int \frac{1}{e^x} \cdot \frac{e^{4x}}{1 + x} \, dx = \int \frac{e^{3x}}{1 + x} \, dx \] Now you can proceed with integrating \( \frac{e^{3x}}{1 + x} \). This integral does not have an elementary form, but can be expressed in terms of special functions or numerical integration methods if needed. So the expression simplifies to: \[ z - \int \frac{e^{3x}}{1 + x} \, dx \] Now, let's go on to explore how this expression might relate to real-world applications. In the realm of engineering, such integrals often appear in problems involving heat transfer and fluid dynamics. When you analyze the flow of gases or liquids, you can encounter these complex expressions when modeling how substances change over time. Integrals like these help calculate quantities such as pressure or temperature changes in various materials. Moreover, when studying electrostatics in physics, similar types of integrals can appear when calculating the potential due to distributed charges. Understanding how to tackle these integrals is crucial for accurate modeling of physical systems and for predicting outcomes in real-world scenarios!

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy