Question

\( \frac{2x^{\frac{1}{2}}.x^{\frac{2}{3}}.6x^{\frac{-7}{3}}}{9x^{\frac{-5}{3}}.x^{\frac{3}{2}}} \)

Ask by Lyons Lindsey. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \frac{4}{3x} \]

Solution

Let's simplify the expression step by step: \[ \frac{2x^{\frac{1}{2}} \cdot x^{\frac{2}{3}} \cdot 6x^{\frac{-7}{3}}}{9x^{\frac{-5}{3}} \cdot x^{\frac{3}{2}}} \] ### Step 1: Combine the Constants Multiply the constants in the numerator and denominator: - **Numerator constants:** \(2 \times 6 = 12\) - **Denominator constants:** \(9\) So the constants part becomes: \[ \frac{12}{9} = \frac{4}{3} \] ### Step 2: Combine the Exponents of \(x\) Use the property of exponents \(x^a \cdot x^b = x^{a+b}\) and \(\frac{x^a}{x^b} = x^{a-b}\): **Numerator exponents:** \[ x^{\frac{1}{2}} \cdot x^{\frac{2}{3}} \cdot x^{\frac{-7}{3}} = x^{\frac{1}{2} + \frac{2}{3} + \frac{-7}{3}} = x^{\frac{1}{2} + \frac{2 - 7}{3}} = x^{\frac{1}{2} - \frac{5}{3}} = x^{\frac{-7}{6}} \] **Denominator exponents:** \[ x^{\frac{-5}{3}} \cdot x^{\frac{3}{2}} = x^{\frac{-5}{3} + \frac{3}{2}} = x^{\frac{-10 + 9}{6}} = x^{\frac{-1}{6}} \] **Combined exponents:** \[ \frac{x^{\frac{-7}{6}}}{x^{\frac{-1}{6}}} = x^{\frac{-7}{6} - \left(\frac{-1}{6}\right)} = x^{\frac{-7 + 1}{6}} = x^{\frac{-6}{6}} = x^{-1} \] ### Step 3: Combine Constants and Exponents Now, combine the simplified constants and the exponent: \[ \frac{4}{3} \cdot x^{-1} = \frac{4}{3x} \] ### Final Simplified Expression \[ \frac{4}{3x} \] **Answer:** \[ \frac{4}{3x} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression \( \frac{2x^{\frac{1}{2}} \cdot x^{\frac{2}{3}} \cdot 6x^{\frac{-7}{3}}}{9x^{\frac{-5}{3}} \cdot x^{\frac{3}{2}}} \), first, we can combine the constants and the exponents for \( x \). Step 1: Combine constants. \[ \frac{2 \cdot 6}{9} = \frac{12}{9} = \frac{4}{3} \] Step 2: Combine exponents of \( x \) in the numerator and the denominator. \[ x^{\frac{1}{2}} \cdot x^{\frac{2}{3}} \cdot x^{\frac{-7}{3}} = x^{\left(\frac{1}{2} + \frac{2}{3} - \frac{7}{3}\right)} \] To simplify the exponent, find a common denominator, which is 6: \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{2}{3} = \frac{4}{6}, \quad -\frac{7}{3} = -\frac{14}{6} \] Now, adding up the exponents: \[ \frac{3}{6} + \frac{4}{6} - \frac{14}{6} = \frac{3 + 4 - 14}{6} = \frac{-7}{6} \] So, the numerator becomes: \[ x^{\frac{-7}{6}} \] Step 3: Simplifying the denominator: \[ x^{\frac{-5}{3}} \cdot x^{\frac{3}{2}} = x^{\left(-\frac{5}{3} + \frac{3}{2}\right)} \] Finding common denominators again: \[ -\frac{5}{3} = -\frac{10}{6}, \quad \frac{3}{2} = \frac{9}{6} \] Thus, \[ -\frac{10}{6} + \frac{9}{6} = -\frac{1}{6} \] So the denominator becomes: \[ x^{-\frac{1}{6}} \] Step 4: Finally, combining the combined parts: \[ \frac{4}{3} \cdot \frac{x^{\frac{-7}{6}}}{x^{-\frac{1}{6}}} = \frac{4}{3} \cdot x^{\left(-\frac{7}{6} + \frac{1}{6}\right)} = \frac{4}{3} \cdot x^{-\frac{6}{6}} = \frac{4}{3} \cdot x^{-1} \] This can also be written as: \[ \frac{4}{3x} \] The simplified expression is: \[ \frac{4}{3x} \]

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy