\( \int ( 3 x ^ { \frac { 1 } { 3 } } + 5 x ^ { - \frac { 1 } { 3 } } + 9 ) d x = \square \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve the integral \( \int ( 3 x ^ { \frac { 1 } { 3 } } + 5 x ^ { - \frac { 1 } { 3 } } + 9 ) d x \), we can integrate each term separately: 1. For \( 3 x^{\frac{1}{3}} \): \[ \int 3 x^{\frac{1}{3}} \, dx = 3 \cdot \frac{x^{\frac{4}{3}}}{\frac{4}{3}} = \frac{9}{4} x^{\frac{4}{3}} \] 2. For \( 5 x^{-\frac{1}{3}} \): \[ \int 5 x^{-\frac{1}{3}} \, dx = 5 \cdot \frac{x^{\frac{2}{3}}}{\frac{2}{3}} = \frac{15}{2} x^{\frac{2}{3}} \] 3. For \( 9 \): \[ \int 9 \, dx = 9x \] Now, combining all the results together, we have: \[ \int ( 3 x ^ { \frac { 1 } { 3 } } + 5 x ^ { - \frac { 1 } { 3 } } + 9 ) d x = \frac{9}{4} x^{\frac{4}{3}} + \frac{15}{2} x^{\frac{2}{3}} + 9x + C \] where \( C \) is the constant of integration. So, the integrated expression is: \[ \frac{9}{4} x^{\frac{4}{3}} + \frac{15}{2} x^{\frac{2}{3}} + 9x + C \]