Question
upstudy study bank question image url

Divide \( \frac{\sqrt{11^{5}}}{\sqrt[4]{11^{3}}} \) using fractional exponents

Ask by Newton Reed. in the United States
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The result is \( 11\sqrt[4]{1331} \).

Solution

Calculate or simplify the expression \( \frac{\sqrt{11^{5}}}{\sqrt[4]{11^{3}}} \). Calculate the value by following steps: - step0: Calculate: \(\frac{\sqrt{11^{5}}}{\sqrt[4]{11^{3}}}\) - step1: Simplify the root: \(\frac{11^{2}\sqrt{11}}{\sqrt[4]{11^{3}}}\) - step2: Evaluate the root: \(\frac{11^{2}\sqrt{11}}{\sqrt[4]{1331}}\) - step3: Evaluate the power: \(\frac{121\sqrt{11}}{\sqrt[4]{1331}}\) - step4: Multiply by the Conjugate: \(\frac{121\sqrt{11}\times \sqrt[4]{1331^{3}}}{\sqrt[4]{1331}\times \sqrt[4]{1331^{3}}}\) - step5: Simplify: \(\frac{121\sqrt{11}\times 11^{2}\sqrt[4]{11}}{\sqrt[4]{1331}\times \sqrt[4]{1331^{3}}}\) - step6: Multiply the numbers: \(\frac{11^{4}\sqrt[4]{1331}}{\sqrt[4]{1331}\times \sqrt[4]{1331^{3}}}\) - step7: Multiply the numbers: \(\frac{11^{4}\sqrt[4]{1331}}{11^{3}}\) - step8: Reduce the fraction: \(11\sqrt[4]{1331}\) The result of dividing \( \frac{\sqrt{11^{5}}}{\sqrt[4]{11^{3}}} \) using fractional exponents is \( 11\sqrt[4]{1331} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify \( \frac{\sqrt{11^5}}{\sqrt[4]{11^3}} \) using fractional exponents, we start by expressing both the numerator and denominator in terms of exponent fractions. The square root can be expressed as an exponent of \( \frac{1}{2} \), so: \[ \sqrt{11^5} = (11^5)^{\frac{1}{2}} = 11^{\frac{5}{2}}. \] Next, the fourth root can be expressed as an exponent of \( \frac{1}{4} \), so: \[ \sqrt[4]{11^3} = (11^3)^{\frac{1}{4}} = 11^{\frac{3}{4}}. \] Now we can rewrite the original expression: \[ \frac{\sqrt{11^5}}{\sqrt[4]{11^3}} = \frac{11^{\frac{5}{2}}}{11^{\frac{3}{4}}}. \] According to the properties of exponents, when dividing powers with the same base, we subtract the exponents: \[ 11^{\frac{5}{2} - \frac{3}{4}}. \] To subtract the exponents, we need a common denominator. The least common denominator between 2 and 4 is 4, so we convert \( \frac{5}{2} \): \[ \frac{5}{2} = \frac{10}{4}. \] Now we can perform the subtraction: \[ \frac{10}{4} - \frac{3}{4} = \frac{7}{4}. \] Thus, we have: \[ 11^{\frac{7}{4}}. \] Ultimately, the simplified expression is: \[ \frac{\sqrt{11^{5}}}{\sqrt[4]{11^{3}}} = 11^{\frac{7}{4}}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy