Answer
- **Part (a)**: The two unit vectors are \( -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j} \) and \( \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j} \).
- **Part (b)**: \( b = \frac{\sqrt{3}}{2} \) or \( b = -\frac{\sqrt{3}}{2} \).
- **Part (c)**: \( a = \frac{5\sqrt{26}}{26} \) or \( a = -\frac{5\sqrt{26}}{26} \).
Solution
To solve the problem, we will go through each part step by step.
### Part (a)
We need to find two unit vectors parallel to \( \mathbf{v} = -24 \mathbf{i} - 7 \mathbf{j} \).
1. **Calculate the magnitude of \( \mathbf{v} \)**:
\[
\|\mathbf{v}\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25
\]
2. **Find the unit vector in the direction of \( \mathbf{v} \)**:
The unit vector \( \mathbf{u} \) in the direction of \( \mathbf{v} \) is given by:
\[
\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{-24 \mathbf{i} - 7 \mathbf{j}}{25} = -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j}
\]
3. **Find the unit vector in the opposite direction**:
The unit vector in the opposite direction is:
\[
-\mathbf{u} = \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j}
\]
Thus, the two unit vectors parallel to \( \mathbf{v} \) are:
1. \( -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j} \)
2. \( \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j} \)
### Part (b)
We need to find \( b \) if \( \mathbf{v} = \left\langle \frac{1}{2}, b \right\rangle \) is a unit vector.
1. **Set up the equation for the magnitude of \( \mathbf{v} \)**:
\[
\|\mathbf{v}\| = \sqrt{\left(\frac{1}{2}\right)^2 + b^2} = 1
\]
2. **Square both sides**:
\[
\left(\frac{1}{2}\right)^2 + b^2 = 1
\]
\[
\frac{1}{4} + b^2 = 1
\]
3. **Solve for \( b^2 \)**:
\[
b^2 = 1 - \frac{1}{4} = \frac{3}{4}
\]
4. **Find \( b \)**:
\[
b = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}
\]
Thus, the values of \( b \) are \( \frac{\sqrt{3}}{2} \) and \( -\frac{\sqrt{3}}{2} \).
### Part (c)
We need to find all values of \( a \) such that \( \mathbf{w} = a \mathbf{i} - \frac{a}{5} \mathbf{j} \) is a unit vector.
1. **Set up the equation for the magnitude of \( \mathbf{w} \)**:
\[
\|\mathbf{w}\| = \sqrt{a^2 + \left(-\frac{a}{5}\right)^2} = 1
\]
2. **Square both sides**:
\[
a^2 + \left(-\frac{a}{5}\right)^2 = 1
\]
\[
a^2 + \frac{a^2}{25} = 1
\]
3. **Combine the terms**:
\[
a^2 \left(1 + \frac{1}{25}\right) = 1
\]
\[
a^2 \left(\frac{25 + 1}{25}\right) = 1
\]
\[
a^2 \left(\frac{26}{25}\right) = 1
\]
4. **Solve for \( a^2 \)**:
\[
a^2 = \frac{25}{26}
\]
5. **Find \( a \)**:
\[
a = \pm \sqrt{\frac{25}{26}} = \pm \frac{5}{\sqrt{26}} = \pm \frac{5\sqrt{26}}{26}
\]
Thus, the values of \( a \) are \( \frac{5\sqrt{26}}{26} \) and \( -\frac{5\sqrt{26}}{26} \).
### Summary of Answers
- **Part (a)**: The two unit vectors are \( -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j} \) and \( \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j} \).
- **Part (b)**: The values of \( b \) are \( \frac{\sqrt{3}}{2} \) and \( -\frac{\sqrt{3}}{2} \).
- **Part (c)**: The values of \( a \) are \( \frac{5\sqrt{26}}{26} \) and \( -\frac{5\sqrt{26}}{26} \).
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution