Question
upstudy study bank question image url

Complete parts (a) through (c) below. a. Find two unit vectors parallel to \( \mathbf{v}=-24 i-7 \mathbf{j} \). b. Find \( b \) if \( v=\left\langle\frac{1}{2}, \mathrm{~b}\right\rangle \) is a unit vector. c. Find all values of a such that \( w=a i-\frac{a}{5} j \) is a unit vector. a. The parallel unit vector with the same direction is

Ask by Ball Sanders. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

- **Part (a)**: The two unit vectors are \( -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j} \) and \( \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j} \). - **Part (b)**: \( b = \frac{\sqrt{3}}{2} \) or \( b = -\frac{\sqrt{3}}{2} \). - **Part (c)**: \( a = \frac{5\sqrt{26}}{26} \) or \( a = -\frac{5\sqrt{26}}{26} \).

Solution

To solve the problem, we will go through each part step by step. ### Part (a) We need to find two unit vectors parallel to \( \mathbf{v} = -24 \mathbf{i} - 7 \mathbf{j} \). 1. **Calculate the magnitude of \( \mathbf{v} \)**: \[ \|\mathbf{v}\| = \sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25 \] 2. **Find the unit vector in the direction of \( \mathbf{v} \)**: The unit vector \( \mathbf{u} \) in the direction of \( \mathbf{v} \) is given by: \[ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{-24 \mathbf{i} - 7 \mathbf{j}}{25} = -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j} \] 3. **Find the unit vector in the opposite direction**: The unit vector in the opposite direction is: \[ -\mathbf{u} = \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j} \] Thus, the two unit vectors parallel to \( \mathbf{v} \) are: 1. \( -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j} \) 2. \( \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j} \) ### Part (b) We need to find \( b \) if \( \mathbf{v} = \left\langle \frac{1}{2}, b \right\rangle \) is a unit vector. 1. **Set up the equation for the magnitude of \( \mathbf{v} \)**: \[ \|\mathbf{v}\| = \sqrt{\left(\frac{1}{2}\right)^2 + b^2} = 1 \] 2. **Square both sides**: \[ \left(\frac{1}{2}\right)^2 + b^2 = 1 \] \[ \frac{1}{4} + b^2 = 1 \] 3. **Solve for \( b^2 \)**: \[ b^2 = 1 - \frac{1}{4} = \frac{3}{4} \] 4. **Find \( b \)**: \[ b = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2} \] Thus, the values of \( b \) are \( \frac{\sqrt{3}}{2} \) and \( -\frac{\sqrt{3}}{2} \). ### Part (c) We need to find all values of \( a \) such that \( \mathbf{w} = a \mathbf{i} - \frac{a}{5} \mathbf{j} \) is a unit vector. 1. **Set up the equation for the magnitude of \( \mathbf{w} \)**: \[ \|\mathbf{w}\| = \sqrt{a^2 + \left(-\frac{a}{5}\right)^2} = 1 \] 2. **Square both sides**: \[ a^2 + \left(-\frac{a}{5}\right)^2 = 1 \] \[ a^2 + \frac{a^2}{25} = 1 \] 3. **Combine the terms**: \[ a^2 \left(1 + \frac{1}{25}\right) = 1 \] \[ a^2 \left(\frac{25 + 1}{25}\right) = 1 \] \[ a^2 \left(\frac{26}{25}\right) = 1 \] 4. **Solve for \( a^2 \)**: \[ a^2 = \frac{25}{26} \] 5. **Find \( a \)**: \[ a = \pm \sqrt{\frac{25}{26}} = \pm \frac{5}{\sqrt{26}} = \pm \frac{5\sqrt{26}}{26} \] Thus, the values of \( a \) are \( \frac{5\sqrt{26}}{26} \) and \( -\frac{5\sqrt{26}}{26} \). ### Summary of Answers - **Part (a)**: The two unit vectors are \( -\frac{24}{25} \mathbf{i} - \frac{7}{25} \mathbf{j} \) and \( \frac{24}{25} \mathbf{i} + \frac{7}{25} \mathbf{j} \). - **Part (b)**: The values of \( b \) are \( \frac{\sqrt{3}}{2} \) and \( -\frac{\sqrt{3}}{2} \). - **Part (c)**: The values of \( a \) are \( \frac{5\sqrt{26}}{26} \) and \( -\frac{5\sqrt{26}}{26} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

First additional information: To find a unit vector parallel to \(\mathbf{v} = -24 \mathbf{i} - 7 \mathbf{j}\), you start by calculating its magnitude, which is \(\sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25\). Then divide the vector by its magnitude: \(\mathbf{u} = \left(-\frac{24}{25}, -\frac{7}{25}\right)\). The second unit vector in the opposite direction will be \(-\mathbf{u} = \left(\frac{24}{25}, \frac{7}{25}\right)\). Second additional information: For part (b), a unit vector \( \mathbf{v} = \left\langle \frac{1}{2}, b \right\rangle \) satisfies the condition \( \sqrt{\left(\frac{1}{2}\right)^2 + b^2} = 1 \). Simplifying, you find \(\frac{1}{4} + b^2 = 1\) leads to \(b^2 = \frac{3}{4}\), giving \( b = \pm \frac{\sqrt{3}}{2} \).

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy