Complete parts (a) through (c) below. a. Find two unit vectors parallel to \( \mathbf{v}=-24 i-7 \mathbf{j} \). b. Find \( b \) if \( v=\left\langle\frac{1}{2}, \mathrm{~b}\right\rangle \) is a unit vector. c. Find all values of a such that \( w=a i-\frac{a}{5} j \) is a unit vector. a. The parallel unit vector with the same direction is
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
First additional information: To find a unit vector parallel to \(\mathbf{v} = -24 \mathbf{i} - 7 \mathbf{j}\), you start by calculating its magnitude, which is \(\sqrt{(-24)^2 + (-7)^2} = \sqrt{576 + 49} = \sqrt{625} = 25\). Then divide the vector by its magnitude: \(\mathbf{u} = \left(-\frac{24}{25}, -\frac{7}{25}\right)\). The second unit vector in the opposite direction will be \(-\mathbf{u} = \left(\frac{24}{25}, \frac{7}{25}\right)\). Second additional information: For part (b), a unit vector \( \mathbf{v} = \left\langle \frac{1}{2}, b \right\rangle \) satisfies the condition \( \sqrt{\left(\frac{1}{2}\right)^2 + b^2} = 1 \). Simplifying, you find \(\frac{1}{4} + b^2 = 1\) leads to \(b^2 = \frac{3}{4}\), giving \( b = \pm \frac{\sqrt{3}}{2} \).