Question
upstudy study bank question image url

c) \( \frac{2 \cdot(5-1)}{x}=\frac{2 \cdot x}{3^{2}+2(-4)} \)

Ask by Cole Cruz. in Argentina
Dec 11,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

Las soluciones de la ecuación son \( x = 2 \) y \( x = -2 \).

Solution

Para resolver la ecuación \( \frac{2 \cdot(5-1)}{x}=\frac{2 \cdot x}{3^{2}+2(-4)} \), primero simplificamos ambos lados. 1. Simplificamos el lado izquierdo: \[ 5 - 1 = 4 \quad \Rightarrow \quad \frac{2 \cdot 4}{x} = \frac{8}{x} \] 2. Simplificamos el lado derecho: \[ 3^2 = 9 \quad \text{y} \quad 2(-4) = -8 \quad \Rightarrow \quad 3^2 + 2(-4) = 9 - 8 = 1 \] Entonces, el lado derecho se convierte en: \[ \frac{2 \cdot x}{1} = 2x \] Ahora la ecuación se ve así: \[ \frac{8}{x} = 2x \] 3. Multiplicamos ambos lados por \( x \) (asumiendo que \( x \neq 0 \)): \[ 8 = 2x^2 \] 4. Dividimos ambos lados entre 2: \[ 4 = x^2 \] 5. Tomamos la raíz cuadrada de ambos lados: \[ x = 2 \quad \text{o} \quad x = -2 \] Por lo tanto, las soluciones de la ecuación son \( x = 2 \) y \( x = -2 \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Let's start by simplifying and solving the equation step by step. First, simplify the right side: \[ 3^2 + 2(-4) = 9 - 8 = 1 \] Now substituting back into the equation gives us: \[ \frac{2 \cdot (5-1)}{x} = \frac{2 \cdot x}{1} \] This simplifies to: \[ \frac{2 \cdot 4}{x} = 2x \] Next, we can write the equation as: \[ \frac{8}{x} = 2x \] Cross-multiplying leads to: \[ 8 = 2x^2 \] Dividing both sides by 2: \[ 4 = x^2 \] Taking the square root of both sides yields: \[ x = 2 \quad \text{or} \quad x = -2 \] So the solutions to the equation are \( x = 2 \) and \( x = -2 \).

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy