Question
upstudy study bank question image url

Find the exact value of the expressions \( \cos (\alpha+\beta) \), \( \sin (\alpha+\beta) \) and \( \tan (\alpha+\beta) \) under the following conditions: \( \cos (\alpha)=\frac{24}{25}, \alpha \) lies in quadrant IV, and \( \sin (\beta)=\frac{-2}{5}, \beta \) lies in quadrant Ill. a. \( \cos (\alpha+\beta)=\frac{-24 \sqrt{21}-14}{125} \) (Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression.) b. \( \sin (\alpha+\beta)=\frac{7 \sqrt{21}-48}{125} \) (Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression.) c. tan \( (\alpha+\beta)=\square \) (Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression.)

Ask by Reese Owen. in the United States
Feb 02,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a. \( \cos(\alpha+\beta) = \frac{-24\sqrt{21} - 14}{125} \) b. \( \sin(\alpha+\beta) = \frac{7\sqrt{21} - 48}{125} \) c. \( \tan(\alpha+\beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \)

Solution

To find the exact values of \( \cos(\alpha+\beta) \), \( \sin(\alpha+\beta) \), and \( \tan(\alpha+\beta) \), we will use the angle addition formulas: 1. \( \cos(\alpha+\beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \) 2. \( \sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \) 3. \( \tan(\alpha+\beta) = \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} \) ### Step 1: Find \( \sin(\alpha) \) and \( \cos(\beta) \) Given: - \( \cos(\alpha) = \frac{24}{25} \) and \( \alpha \) is in quadrant IV. - \( \sin(\beta) = \frac{-2}{5} \) and \( \beta \) is in quadrant III. #### Finding \( \sin(\alpha) \): Using the Pythagorean identity: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] \[ \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] \[ \sin^2(\alpha) + \frac{576}{625} = 1 \] \[ \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \] \[ \sin(\alpha) = -\sqrt{\frac{49}{625}} = -\frac{7}{25} \quad (\text{since } \alpha \text{ is in quadrant IV}) \] #### Finding \( \cos(\beta) \): Using the Pythagorean identity: \[ \sin^2(\beta) + \cos^2(\beta) = 1 \] \[ \left(\frac{-2}{5}\right)^2 + \cos^2(\beta) = 1 \] \[ \frac{4}{25} + \cos^2(\beta) = 1 \] \[ \cos^2(\beta) = 1 - \frac{4}{25} = \frac{21}{25} \] \[ \cos(\beta) = -\sqrt{\frac{21}{25}} = -\frac{\sqrt{21}}{5} \quad (\text{since } \beta \text{ is in quadrant III}) \] ### Step 2: Calculate \( \cos(\alpha+\beta) \) and \( \sin(\alpha+\beta) \) #### Calculate \( \cos(\alpha+\beta) \): \[ \cos(\alpha+\beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Substituting the values: \[ \cos(\alpha+\beta) = \left(\frac{24}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} \] \[ = \frac{-24\sqrt{21} - 14}{125} \] #### Calculate \( \sin(\alpha+\beta) \): \[ \sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] Substituting the values: \[ \sin(\alpha+\beta) = \left(-\frac{7}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) + \left(\frac{24}{25}\right)\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} \] \[ = \frac{7\sqrt{21} - 48}{125} \] ### Step 3: Calculate \( \tan(\alpha+\beta) \) Using the values of \( \sin(\alpha+\beta) \) and \( \cos(\alpha+\beta) \): \[ \tan(\alpha+\beta) = \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \] ### Final Answers: a. \( \cos(\alpha+\beta) = \frac{-24\sqrt{21} - 14}{125} \) b. \( \sin(\alpha+\beta) = \frac{7\sqrt{21} - 48}{125} \) c. \( \tan(\alpha+\beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To find \(\cos(\alpha + \beta)\), \(\sin(\alpha + \beta)\), and \(\tan(\alpha + \beta)\), we start by determining \(\sin(\alpha)\) and \(\cos(\beta)\) based on the given values of \(\cos(\alpha)\) and \(\sin(\beta)\). 1. **Finding \(\sin(\alpha)\)**: Since \(\cos(\alpha) = \frac{24}{25}\) and \(\alpha\) lies in the IV quadrant, we can use the Pythagorean identity: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \implies \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] Calculate \(\sin^2(\alpha)\): \[ \sin^2(\alpha) + \frac{576}{625} = 1 \implies \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \] Thus, \[ \sin(\alpha) = -\sqrt{\frac{49}{625}} = -\frac{7}{25} \] 2. **Finding \(\cos(\beta)\)**: Given \(\sin(\beta)=\frac{-2}{5}\) and \(\beta\) lies in quadrant III, we use the Pythagorean identity again: \[ \sin^2(\beta) + \cos^2(\beta) = 1 \implies \left(\frac{-2}{5}\right)^2 + \cos^2(\beta) = 1 \] Calculate \(\cos^2(\beta)\): \[ \frac{4}{25} + \cos^2(\beta) = 1 \implies \cos^2(\beta) = 1 - \frac{4}{25} = \frac{21}{25} \] Thus, \[ \cos(\beta) = -\sqrt{\frac{21}{25}} = -\frac{\sqrt{21}}{5} \] 3. **Calculating \(\cos(\alpha + \beta)\)**: Now we apply the angle addition formula for cosine: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Substituting our values: \[ \cos(\alpha + \beta) = \left(\frac{24}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} = \frac{-24\sqrt{21} - 14}{125} \] 4. **Calculating \(\sin(\alpha + \beta)\)**: Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] Substituting our values: \[ \sin(\alpha + \beta) = \left(-\frac{7}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) + \left(\frac{24}{25}\right)\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} = \frac{7\sqrt{21} - 48}{125} \] 5. **Calculating \(\tan(\alpha + \beta)\)**: We use the relationship \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] Substituting the values we computed: \[ \tan(\alpha + \beta) = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \] Simplifying the negative form: \[ \tan(\alpha + \beta) = \frac{48 - 7\sqrt

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy