Pregunta
upstudy study bank question image url

Find the exact value of the expressions \( \cos (\alpha+\beta) \), \( \sin (\alpha+\beta) \) and \( \tan (\alpha+\beta) \) under the following conditions: \( \cos (\alpha)=\frac{24}{25}, \alpha \) lies in quadrant IV, and \( \sin (\beta)=\frac{-2}{5}, \beta \) lies in quadrant Ill. a. \( \cos (\alpha+\beta)=\frac{-24 \sqrt{21}-14}{125} \) (Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression.) b. \( \sin (\alpha+\beta)=\frac{7 \sqrt{21}-48}{125} \) (Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression.) c. tan \( (\alpha+\beta)=\square \) (Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression.)

Ask by Reese Owen. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. \( \cos(\alpha+\beta) = \frac{-24\sqrt{21} - 14}{125} \) b. \( \sin(\alpha+\beta) = \frac{7\sqrt{21} - 48}{125} \) c. \( \tan(\alpha+\beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \)

Solución

To find the exact values of \( \cos(\alpha+\beta) \), \( \sin(\alpha+\beta) \), and \( \tan(\alpha+\beta) \), we will use the angle addition formulas: 1. \( \cos(\alpha+\beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \) 2. \( \sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \) 3. \( \tan(\alpha+\beta) = \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} \) ### Step 1: Find \( \sin(\alpha) \) and \( \cos(\beta) \) Given: - \( \cos(\alpha) = \frac{24}{25} \) and \( \alpha \) is in quadrant IV. - \( \sin(\beta) = \frac{-2}{5} \) and \( \beta \) is in quadrant III. #### Finding \( \sin(\alpha) \): Using the Pythagorean identity: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \] \[ \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] \[ \sin^2(\alpha) + \frac{576}{625} = 1 \] \[ \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \] \[ \sin(\alpha) = -\sqrt{\frac{49}{625}} = -\frac{7}{25} \quad (\text{since } \alpha \text{ is in quadrant IV}) \] #### Finding \( \cos(\beta) \): Using the Pythagorean identity: \[ \sin^2(\beta) + \cos^2(\beta) = 1 \] \[ \left(\frac{-2}{5}\right)^2 + \cos^2(\beta) = 1 \] \[ \frac{4}{25} + \cos^2(\beta) = 1 \] \[ \cos^2(\beta) = 1 - \frac{4}{25} = \frac{21}{25} \] \[ \cos(\beta) = -\sqrt{\frac{21}{25}} = -\frac{\sqrt{21}}{5} \quad (\text{since } \beta \text{ is in quadrant III}) \] ### Step 2: Calculate \( \cos(\alpha+\beta) \) and \( \sin(\alpha+\beta) \) #### Calculate \( \cos(\alpha+\beta) \): \[ \cos(\alpha+\beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Substituting the values: \[ \cos(\alpha+\beta) = \left(\frac{24}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} \] \[ = \frac{-24\sqrt{21} - 14}{125} \] #### Calculate \( \sin(\alpha+\beta) \): \[ \sin(\alpha+\beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] Substituting the values: \[ \sin(\alpha+\beta) = \left(-\frac{7}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) + \left(\frac{24}{25}\right)\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} \] \[ = \frac{7\sqrt{21} - 48}{125} \] ### Step 3: Calculate \( \tan(\alpha+\beta) \) Using the values of \( \sin(\alpha+\beta) \) and \( \cos(\alpha+\beta) \): \[ \tan(\alpha+\beta) = \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \] ### Final Answers: a. \( \cos(\alpha+\beta) = \frac{-24\sqrt{21} - 14}{125} \) b. \( \sin(\alpha+\beta) = \frac{7\sqrt{21} - 48}{125} \) c. \( \tan(\alpha+\beta) = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \(\cos(\alpha + \beta)\), \(\sin(\alpha + \beta)\), and \(\tan(\alpha + \beta)\), we start by determining \(\sin(\alpha)\) and \(\cos(\beta)\) based on the given values of \(\cos(\alpha)\) and \(\sin(\beta)\). 1. **Finding \(\sin(\alpha)\)**: Since \(\cos(\alpha) = \frac{24}{25}\) and \(\alpha\) lies in the IV quadrant, we can use the Pythagorean identity: \[ \sin^2(\alpha) + \cos^2(\alpha) = 1 \implies \sin^2(\alpha) + \left(\frac{24}{25}\right)^2 = 1 \] Calculate \(\sin^2(\alpha)\): \[ \sin^2(\alpha) + \frac{576}{625} = 1 \implies \sin^2(\alpha) = 1 - \frac{576}{625} = \frac{49}{625} \] Thus, \[ \sin(\alpha) = -\sqrt{\frac{49}{625}} = -\frac{7}{25} \] 2. **Finding \(\cos(\beta)\)**: Given \(\sin(\beta)=\frac{-2}{5}\) and \(\beta\) lies in quadrant III, we use the Pythagorean identity again: \[ \sin^2(\beta) + \cos^2(\beta) = 1 \implies \left(\frac{-2}{5}\right)^2 + \cos^2(\beta) = 1 \] Calculate \(\cos^2(\beta)\): \[ \frac{4}{25} + \cos^2(\beta) = 1 \implies \cos^2(\beta) = 1 - \frac{4}{25} = \frac{21}{25} \] Thus, \[ \cos(\beta) = -\sqrt{\frac{21}{25}} = -\frac{\sqrt{21}}{5} \] 3. **Calculating \(\cos(\alpha + \beta)\)**: Now we apply the angle addition formula for cosine: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Substituting our values: \[ \cos(\alpha + \beta) = \left(\frac{24}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) - \left(-\frac{7}{25}\right)\left(-\frac{2}{5}\right) \] \[ = -\frac{24\sqrt{21}}{125} - \frac{14}{125} = \frac{-24\sqrt{21} - 14}{125} \] 4. **Calculating \(\sin(\alpha + \beta)\)**: Using the sine addition formula: \[ \sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \] Substituting our values: \[ \sin(\alpha + \beta) = \left(-\frac{7}{25}\right)\left(-\frac{\sqrt{21}}{5}\right) + \left(\frac{24}{25}\right)\left(-\frac{2}{5}\right) \] \[ = \frac{7\sqrt{21}}{125} - \frac{48}{125} = \frac{7\sqrt{21} - 48}{125} \] 5. **Calculating \(\tan(\alpha + \beta)\)**: We use the relationship \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \] Substituting the values we computed: \[ \tan(\alpha + \beta) = \frac{\frac{7\sqrt{21} - 48}{125}}{\frac{-24\sqrt{21} - 14}{125}} = \frac{7\sqrt{21} - 48}{-24\sqrt{21} - 14} \] Simplifying the negative form: \[ \tan(\alpha + \beta) = \frac{48 - 7\sqrt

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad