Question
\( \left. \begin{array} { l } { ( 5 a + 2 ) ( 3 a - 1 ) = } \\ { ( x - 4 ) ( x - 2 ) = } \end{array} \right. \)
Ask by Olson Santiago. in Indonesia
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The expanded forms are:
- \( (5a + 2)(3a - 1) = 15a^2 + a - 2 \)
- \( (x - 4)(x - 2) = x^2 - 6x + 8 \)
Solution
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(5a+2\right)\left(3a-1\right)\)
- step1: Apply the distributive property:
\(5a\times 3a-5a\times 1+2\times 3a-2\times 1\)
- step2: Multiply the terms:
\(15a^{2}-5a+6a-2\)
- step3: Add the terms:
\(15a^{2}+a-2\)
Expand the expression \( (x - 4)(x - 2) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(\left(x-4\right)\left(x-2\right)\)
- step1: Apply the distributive property:
\(x\times x-x\times 2-4x-\left(-4\times 2\right)\)
- step2: Multiply the terms:
\(x^{2}-2x-4x-\left(-8\right)\)
- step3: Remove the parentheses:
\(x^{2}-2x-4x+8\)
- step4: Subtract the terms:
\(x^{2}-6x+8\)
Let's expand both expressions step by step.
1. **For the expression \( (5a + 2)(3a - 1) \)**:
- We apply the distributive property (also known as the FOIL method for binomials):
\[
(5a + 2)(3a - 1) = 5a \cdot 3a + 5a \cdot (-1) + 2 \cdot 3a + 2 \cdot (-1)
\]
- Calculating each term:
- \( 5a \cdot 3a = 15a^2 \)
- \( 5a \cdot (-1) = -5a \)
- \( 2 \cdot 3a = 6a \)
- \( 2 \cdot (-1) = -2 \)
- Now, combine the like terms:
\[
15a^2 + (-5a + 6a) - 2 = 15a^2 + a - 2
\]
So, the expanded form is:
\[
15a^2 + a - 2
\]
2. **For the expression \( (x - 4)(x - 2) \)**:
- Again, we apply the distributive property:
\[
(x - 4)(x - 2) = x \cdot x + x \cdot (-2) + (-4) \cdot x + (-4) \cdot (-2)
\]
- Calculating each term:
- \( x \cdot x = x^2 \)
- \( x \cdot (-2) = -2x \)
- \( -4 \cdot x = -4x \)
- \( -4 \cdot (-2) = 8 \)
- Now, combine the like terms:
\[
x^2 + (-2x - 4x) + 8 = x^2 - 6x + 8
\]
So, the expanded form is:
\[
x^2 - 6x + 8
\]
In summary, the expanded forms are:
- \( (5a + 2)(3a - 1) = 15a^2 + a - 2 \)
- \( (x - 4)(x - 2) = x^2 - 6x + 8 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Beyond the Answer
Let's unravel the first equation! When you expand \( (5a + 2)(3a - 1) \), you combine the outer and inner parts. This gives you \( 15a^2 - 5a + 6a - 2 \), simplifying to \( 15a^2 + a - 2 \). Now, for the second equation! If we expand \( (x - 4)(x - 2) \), we follow the same process: \( x^2 - 2x - 4x + 8 \), which combines to give you \( x^2 - 6x + 8 \). It's amazing how polynomial expansion works—it’s like a magical mathematical dance!