Answer
### 5.2.1 The Engine's Brake Power in kW
The brake power (BP) of an engine is approximately 1507 kW.
### 5.2.2 The Mean Speed of the Engine's Pistons in \( \mathrm{m/s} \)
The mean speed of the pistons is approximately 4.68 m/s.
### 5.2.3 The Engine's Swept Volume in \( \mathrm{m}^3 \)
The engine's swept volume is approximately 0.134 m³.
### 5.2.4 The Engine's Induced Volume in \( \mathrm{m}^3/s \)
The engine's induced volume is approximately 0.456 m³/s.
### 5.2.5 The Brake Thermal Efficiency
The brake thermal efficiency is approximately 59.7%.
Solution
### 5.2.1 The Engine's Brake Power in kW
The brake power (BP) of an engine can be calculated using the formula:
\[
BP = \frac{2 \pi N T}{60}
\]
where:
- \( N \) = engine speed in revolutions per minute (rpm)
- \( T \) = brake torque in Nm
Given:
- \( N = 240 \, \text{r/min} \)
- \( T = 11,860 \, \text{kNm} = 11,860,000 \, \text{Nm} \)
Substituting the values:
\[
BP = \frac{2 \pi (240) (11,860,000)}{60}
\]
Calculating:
\[
BP = \frac{2 \pi (240) (11,860,000)}{60} \approx \frac{2 \times 3.14159 \times 240 \times 11,860,000}{60}
\]
\[
BP \approx \frac{2 \times 3.14159 \times 240 \times 11,860,000}{60} \approx 1,507,000 \, \text{W} \approx 1507 \, \text{kW}
\]
### 5.2.2 The Mean Speed of the Engine's Pistons in \( \mathrm{m/s} \)
The mean speed of the pistons can be calculated using the formula:
\[
\text{Mean Speed} = \frac{2 \times \text{Stroke Length} \times N}{60}
\]
Given:
- Stroke Length = \( 0.585 \, \text{m} \)
- \( N = 240 \, \text{r/min} \)
Substituting the values:
\[
\text{Mean Speed} = \frac{2 \times 0.585 \times 240}{60}
\]
Calculating:
\[
\text{Mean Speed} = \frac{2 \times 0.585 \times 240}{60} = \frac{280.8}{60} \approx 4.68 \, \text{m/s}
\]
### 5.2.3 The Engine's Swept Volume in \( \mathrm{m}^3 \)
The swept volume (V_s) of a cylinder can be calculated using the formula:
\[
V_s = \frac{\pi}{4} \times \text{Bore}^2 \times \text{Stroke}
\]
Given:
- Bore = \( 0.380 \, \text{m} \)
- Stroke = \( 0.585 \, \text{m} \)
Calculating the swept volume for one cylinder:
\[
V_s = \frac{\pi}{4} \times (0.380)^2 \times (0.585)
\]
Calculating:
\[
V_s = \frac{3.14159}{4} \times 0.1444 \times 0.585 \approx 0.067 \, \text{m}^3
\]
Since there are 2 cylinders:
\[
\text{Total Swept Volume} = 2 \times V_s \approx 2 \times 0.067 \approx 0.134 \, \text{m}^3
\]
### 5.2.4 The Engine's Induced Volume in \( \mathrm{m}^3/s \)
The induced volume (V_i) can be calculated using the formula:
\[
V_i = V_s \times N \times \text{Volumetric Efficiency}
\]
Given:
- Volumetric Efficiency = \( 0.85 \)
- \( N = 240 \, \text{r/min} \)
Calculating the induced volume per second:
\[
V_i = 0.134 \, \text{m}^3 \times \frac{240}{60} \times 0.85
\]
Calculating:
\[
V_i = 0.134 \times 4 \times 0.85 \approx 0.456 \, \text{m}^3/s
\]
### 5.2.5 The Brake Thermal Efficiency
The brake thermal efficiency (\( \eta_b \)) can be calculated using the formula:
\[
\eta_b = \frac{BP}{\dot{Q}}
\]
Where \( \dot{Q} \) is the heat input, calculated as:
\[
\dot{Q} = V_i \times \text{Air-Fuel Ratio} \times \text{Calorific Value}
\]
Given:
- Air-Fuel Ratio = \( 7:1 \)
- Calorific Value = \( 38600 \, \text{kJ/m}^3 \)
Calculating \( \dot{Q} \):
\[
\dot{Q} = V_i \times \left( \frac{1}{7} \right) \times 38600
\]
Substituting \( V_i \):
\[
\dot{Q} = 0.456 \, \text{m}^3/s \times \left( \frac{1}{7} \right) \times 38600
\]
Calculating:
\[
\dot{Q} \approx 0.456 \times 0.142857 \times 38600 \approx 0.456 \times 5514.29 \approx 2515.71 \, \text{kW}
\]
Now, substituting \( BP \) and \( \dot{Q} \) into the efficiency formula:
\[
\eta_b = \frac{1507}{2515.71} \approx 0.597 \text{ or } 59.7\%
\]
### Summary of Results
- **Brake Power**: \( 1507 \, \text{kW} \)
- **Mean Speed of Pistons**: \( 4.68 \, \text{m/s} \)
- **Swept Volume**: \( 0.134 \, \text{m}^3 \)
- **Induced Volume**: \( 0.456 \, \text{m}^3/s \)
- **Brake Thermal Efficiency**: \( 59.7\% \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution