Question
upstudy study bank question image url

(9) Намерете неизвестния член на пропорцията. a) \( \frac{7}{15}=\frac{x}{3} \) б) \( 9: x=36: 52 \) в) \( 5: x=2,5: 8 \) г) \( x: 1,2=\frac{35}{4}: 2 \) (10) Ако \( \frac{5}{x}=\frac{10}{13} \) и \( \frac{x}{10}=\frac{y}{12} \), намерете \( x+y \). (11) Сграда има правоъгълна основа с дължина 50 m и широчина 20 m . Можете ли да начертаете в тетрадките си план на основата на сградата, ако използвате мащаб \( 1: 50 \) ? Изберете подходящ мащаб и начертайте правоъгълника, отговарящ на основата на сградата.

Ask by Carrillo Davison. in Bulgaria
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Problem 9:** - a) \( x = \frac{7}{5} \) - b) \( x = 13 \) - c) \( x = 16 \) - d) \( x = 5.25 \) **Problem 10:** - \( x + y = 14.3 \) **Problem 11:** - Draw a rectangle with dimensions 1 m (length) and 0.4 m (width) using a scale of \( 1:50 \).

Solution

Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\frac{5}{x}=\frac{10}{13}\\\frac{x}{10}=\frac{y}{12}\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{13}{2}\\\frac{x}{10}=\frac{y}{12}\end{array}\right.\) - step2: Substitute the value of \(x:\) \(\frac{\frac{13}{2}}{10}=\frac{y}{12}\) - step3: Simplify: \(\frac{13}{20}=\frac{y}{12}\) - step4: Swap the sides: \(\frac{y}{12}=\frac{13}{20}\) - step5: Multiply both sides of the equation by \(12:\) \(\frac{y}{12}\times 12=\frac{13}{20}\times 12\) - step6: Multiply the terms: \(y=\frac{13\times 12}{20}\) - step7: Evaluate: \(y=\frac{39}{5}\) - step8: Calculate: \(\left\{ \begin{array}{l}x=\frac{13}{2}\\y=\frac{39}{5}\end{array}\right.\) - step9: Check the solution: \(\left\{ \begin{array}{l}x=\frac{13}{2}\\y=\frac{39}{5}\end{array}\right.\) - step10: Rewrite: \(\left(x,y\right) = \left(\frac{13}{2},\frac{39}{5}\right)\) Solve the system of equations \( 7/15=x/3; 9/x=36/52; 5/x=2.5/8; x/1.2=35/4/2 \). Solve the system of equations by following steps: - step0: Solution: \(\left\{ \begin{array}{l}\frac{7}{15}=\frac{x}{3}\\\frac{9}{x}=\frac{36}{52}\\\frac{5}{x}=\frac{2.5}{8}\\\frac{x}{1.2}=\frac{\frac{35}{4}}{2}\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}x=\frac{7}{5}\\x=13\\x=16\\x=\frac{21}{4}\end{array}\right.\) - step2: Find the intersection: \(x \in \varnothing \) Let's solve the problems step by step. ### Problem 9: Find the unknown member of the proportion. a) \( \frac{7}{15}=\frac{x}{3} \) To find \( x \), we can cross-multiply: \[ 7 \cdot 3 = 15 \cdot x \implies 21 = 15x \implies x = \frac{21}{15} = \frac{7}{5} \] b) \( 9: x=36: 52 \) This can be written as: \[ \frac{9}{x} = \frac{36}{52} \] Cross-multiplying gives: \[ 9 \cdot 52 = 36 \cdot x \implies 468 = 36x \implies x = \frac{468}{36} = 13 \] c) \( 5: x=2.5: 8 \) This can be written as: \[ \frac{5}{x} = \frac{2.5}{8} \] Cross-multiplying gives: \[ 5 \cdot 8 = 2.5 \cdot x \implies 40 = 2.5x \implies x = \frac{40}{2.5} = 16 \] d) \( x: 1.2=\frac{35}{4}: 2 \) This can be written as: \[ \frac{x}{1.2} = \frac{35/4}{2} \] Cross-multiplying gives: \[ x \cdot 2 = 1.2 \cdot \frac{35}{4} \implies 2x = \frac{42}{4} \implies x = \frac{21}{4} = 5.25 \] ### Summary of Results for Problem 9: - a) \( x = \frac{7}{5} \) - b) \( x = 13 \) - c) \( x = 16 \) - d) \( x = 5.25 \) --- ### Problem 10: If \( \frac{5}{x}=\frac{10}{13} \) and \( \frac{x}{10}=\frac{y}{12} \), find \( x+y \). From the first equation: \[ \frac{5}{x} = \frac{10}{13} \implies 5 \cdot 13 = 10 \cdot x \implies 65 = 10x \implies x = \frac{65}{10} = 6.5 \] Now substituting \( x \) into the second equation: \[ \frac{6.5}{10} = \frac{y}{12} \implies 6.5 \cdot 12 = 10y \implies 78 = 10y \implies y = \frac{78}{10} = 7.8 \] Now, we find \( x + y \): \[ x + y = 6.5 + 7.8 = 14.3 \] ### Summary of Result for Problem 10: - \( x + y = 14.3 \) --- ### Problem 11: Drawing the plan of the building's base. The building has a rectangular base with dimensions: - Length = 50 m - Width = 20 m Using a scale of \( 1:50 \): - Length in the drawing = \( \frac{50}{50} = 1 \) m - Width in the drawing = \( \frac{20}{50} = 0.4 \) m You can draw a rectangle with dimensions 1 m by 0.4 m on your paper to represent the base of the building. ### Summary of Result for Problem 11: - Draw a rectangle with dimensions 1 m (length) and 0.4 m (width) using a scale of \( 1:50 \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

Така, да се впуснем в забавното приключение на пропорцията! Първо, за да намерите неизвестния член в пропорцията \( \frac{7}{15}=\frac{x}{3} \), просто умножете 7 по 3 и след това разделете на 15. Получавате \( x = \frac{21}{15} \), което може да бъде опростено до \( 1.4 \). Лесно, нали? Сега е време да разгледаме втория въпрос за \( x \) и \( y \)! От \( \frac{5}{x}=\frac{10}{13} \) можем да намерим \( x = \frac{5 \cdot 13}{10} = 6.5 \). След това, използвайки стойността на \( x \) в \( \frac{x}{10}=\frac{y}{12} \), получаваме \( y = \frac{6.5 \cdot 12}{10} = 7.8 \). За да намерим \( x + y \), просто събирайте: \( 6.5 + 7.8 = 14.3 \)! Няма нищо по-вълнуващо от решаването на задачи, нали?

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy