Question
upstudy study bank question image url

4. Si tenemos que \( A=\frac{5^{n+2}-5^{n+1}}{5^{n+1}} \) halle la suma de cifras de \( A^{2} \)

Ask by Harrington Murphy. in Peru
Dec 22,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

La suma de las cifras de \( A^2 \) es **7**.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Mind Expander

Para simplificar \( A \), comenzamos descomponiéndolo. Teniendo \( A=\frac{5^{n+2}-5^{n+1}}{5^{n+1}} \), podemos factorizar el numerador como: \[ A = \frac{5^{n+1}(5 - 1)}{5^{n+1}} \] Esto simplifica a: \[ A = 5 - 1 = 4 \] Ahora, para hallar \( A^2 \): \[ A^2 = 4^2 = 16 \] La suma de cifras de \( A^2 \) es simplemente la suma de las cifras de 16, es decir: \[ 1 + 6 = 7 \] Por lo tanto, la suma de cifras de \( A^{2} \) es \( 7 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy