Question
upstudy study bank question image url

11. \( 5^{7} \div 5^{4}= \) \( \qquad \) 12. \( \left(2^{3} \times 2^{2}\right) \div\left(2^{2} \times 2^{2}\right)= \) \( \qquad \) \( = \) \( \qquad \) 13. \( \left(7^{8} \div 7^{4}\right) \times\left(7^{10} \div 7^{8}\right)= \) \( \qquad \) \( = \) \( \qquad \) 14. \( 10^{6} \div 10^{4}= \) \( \qquad \) \( = \) \( \qquad \) 15. \( \frac{a^{15}}{a^{2}} \), where \( a \neq 0= \) \( \qquad \) \( \qquad \) 16. \( \frac{\left(10^{2}\right)\left(10^{7}\right)}{10^{5}}= \) \( \qquad \) \( = \) \( \qquad \) 17. \( \frac{4^{7}}{4^{7}} \) \( = \) \( \qquad \) \( = \) \( \qquad \) 18. \( \frac{20^{9}}{20}= \) \( \qquad \) \( = \) \( \qquad \) 19. \( \left(11 \times 11^{5}\right) \div 11^{2} \) \( \qquad \) \( = \) \( \qquad \) 20. \( 22^{10} \div 22^{8} \) \( \qquad \) \( = \) \( \qquad \)

Ask by Mathis Wilson. in the Philippines
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

11. \( 5^{7} \div 5^{4} = 125 \) 12. \( \left(2^{3} \times 2^{2}\right) \div \left(2^{2} \times 2^{2}\right) = 2 \) 13. \( \left(7^{8} \div 7^{4}\right) \times \left(7^{10} \div 7^{8}\right) = 117649 \) 14. \( 10^{6} \div 10^{4} = 100 \) 15. \( \frac{a^{15}}{a^{2}} = a^{13} \) 16. \( \frac{\left(10^{2}\right) \left(10^{7}\right)}{10^{5}} = 10000 \) 17. \( \frac{4^{7}}{4^{7}} = 1 \) 18. \( \frac{20^{9}}{20} = 25,\!600,\!000,\!000 \) 19. \( \left(11 \times 11^{5}\right) \div 11^{2} = 14,\!641 \) 20. \( 22^{10} \div 22^{8} = 484 \)

Solution

Sure! Let's solve each of the exponent problems step by step. --- **11.** \( 5^{7} \div 5^{4} \) **Solution:** \[ 5^{7} \div 5^{4} = 5^{7-4} = 5^{3} = 125 \] **Answer:** \[ 125 \] --- **12.** \( \left(2^{3} \times 2^{2}\right) \div \left(2^{2} \times 2^{2}\right) \) **Solution:** \[ 2^{3} \times 2^{2} = 2^{3+2} = 2^{5} \] \[ 2^{2} \times 2^{2} = 2^{2+2} = 2^{4} \] \[ \frac{2^{5}}{2^{4}} = 2^{5-4} = 2^{1} = 2 \] **Answer:** \[ 2^{1} = 2 \] --- **13.** \( \left(7^{8} \div 7^{4}\right) \times \left(7^{10} \div 7^{8}\right) \) **Solution:** \[ 7^{8} \div 7^{4} = 7^{8-4} = 7^{4} \] \[ 7^{10} \div 7^{8} = 7^{10-8} = 7^{2} \] \[ 7^{4} \times 7^{2} = 7^{4+2} = 7^{6} = 117649 \] **Answer:** \[ 7^{6} = 117649 \] --- **14.** \( 10^{6} \div 10^{4} \) **Solution:** \[ 10^{6} \div 10^{4} = 10^{6-4} = 10^{2} = 100 \] **Answer:** \[ 10^{2} = 100 \] --- **15.** \( \frac{a^{15}}{a^{2}} \), where \( a \neq 0 \) **Solution:** \[ \frac{a^{15}}{a^{2}} = a^{15-2} = a^{13} \] **Answer:** \[ a^{13} \] --- **16.** \( \frac{\left(10^{2}\right) \left(10^{7}\right)}{10^{5}} \) **Solution:** \[ 10^{2} \times 10^{7} = 10^{2+7} = 10^{9} \] \[ \frac{10^{9}}{10^{5}} = 10^{9-5} = 10^{4} = 10000 \] **Answer:** \[ 10^{4} = 10000 \] --- **17.** \( \frac{4^{7}}{4^{7}} \) **Solution:** \[ \frac{4^{7}}{4^{7}} = 4^{7-7} = 4^{0} = 1 \] **Answer:** \[ 1 \] --- **18.** \( \frac{20^{9}}{20} \) **Solution:** \[ 20 = 20^{1} \] \[ \frac{20^{9}}{20^{1}} = 20^{9-1} = 20^{8} \] \[ 20^{8} = 25,600,000,000 \] **Answer:** \[ 20^{8} = 25,\!600,\!000,\!000 \] --- **19.** \( \left(11 \times 11^{5}\right) \div 11^{2} \) **Solution:** \[ 11 \times 11^{5} = 11^{1+5} = 11^{6} \] \[ \frac{11^{6}}{11^{2}} = 11^{6-2} = 11^{4} = 14,\!641 \] **Answer:** \[ 11^{4} = 14,\!641 \] --- **20.** \( 22^{10} \div 22^{8} \) **Solution:** \[ 22^{10} \div 22^{8} = 22^{10-8} = 22^{2} = 484 \] **Answer:** \[ 22^{2} = 484 \] --- I hope this helps! If you have any more questions or need further explanations, feel free to ask.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To add some fun behind the equations of exponents, let’s delve into how these mathematical manipulations aren't just abstract numbers but have real-life applications! Exponential growth is seen in everything from population studies to compound interest in finance. Whenever you double down on your investments, envision those numbers growing exponentially in your bank account! Now, when working with exponents, one common pitfall is misapplying the rules, especially with division and multiplication. Remember, when dividing powers of the same base, you subtract the exponents (like \( a^m \div a^n = a^{m-n} \)). It's easy to mix this up, so take a moment to double-check your steps and keep those rules in mind to avoid frustrating errors!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy