Question
upstudy study bank question image url

Rewrite this expression into Factored Form \[ y=2 x^{2}-4 x-30 \] \( y=2(x+5)(x-3) \) \( y=2(x-7)(x+4) \) \( y=2(x+3)(x-5) \) \( y=2(x-10)(x+6) \)

Ask by Lee Herrera. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The factored form is \( y=2(x-5)(x+3) \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To factor the expression \(y = 2x^2 - 4x - 30\), we first look for common factors. We see that \(2\) can be factored out from the entire polynomial, giving us \(y = 2(x^2 - 2x - 15)\). Next, we need to factor the quadratic \(x^2 - 2x - 15\). This factors into \((x - 5)(x + 3)\). So, our factored form is \(y = 2(x - 5)(x + 3)\). Now, let's check our options again: none of them match exactly! However, if we realize the factorization gives us \(y = 2(x - 5)(x + 3)\), that aligns with the option \(y = 2(x + 3)(x - 5)\). Hence, this option is indeed correct, although presented in a slightly different order. So, the correct choice is: \(y = 2(x + 3)(x - 5)\)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy