Answer
For \( y = x^2 - 8x \):
- Axis of Symmetry: \( x = 4 \)
- Vertex: \( (4, -16) \)
- Y-Intercept: \( (0, 0) \)
- Zeros: \( x = 0 \) and \( x = 8 \)
For \( y = x^2 + 2x - 15 \):
- Axis of Symmetry: \( x = -1 \)
- Vertex: \( (-1, -16) \)
- Y-Intercept: \( (0, -15) \)
- Zeros: \( x = -5 \) and \( x = 3 \)
Solution
Function by following steps:
- step0: Find the y-intercept:
\(y=x^{2}-8x\)
- step1: Set \(x\)=0\(:\)
\(y=0^{2}-8\times 0\)
- step2: Multiply:
\(y=0^{2}-0\)
- step3: Simplify:
\(y=0\)
Analyze the y intercept of the function \( y=x^{2}+2x-15 \)
Function by following steps:
- step0: Find the y-intercept:
\(y=x^{2}+2x-15\)
- step1: Set \(x\)=0\(:\)
\(y=0^{2}+2\times 0-15\)
- step2: Multiply:
\(y=0^{2}+0-15\)
- step3: Simplify:
\(y=-15\)
Analyze the x intercept of the function \( y=x^{2}-8x \)
Function by following steps:
- step0: Find the \(x\)-intercept/zero:
\(y=x^{2}-8x\)
- step1: Set \(y\)=0\(:\)
\(0=x^{2}-8x\)
- step2: Swap the sides:
\(x^{2}-8x=0\)
- step3: Factor the expression:
\(x\left(x-8\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&x-8=0\\&x=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=8\\&x=0\end{align}\)
- step6: Calculate:
\(x_{1}=0,x_{2}=8\)
Analyze the x intercept of the function \( y=x^{2}+2x-15 \)
Function by following steps:
- step0: Find the \(x\)-intercept/zero:
\(y=x^{2}+2x-15\)
- step1: Set \(y\)=0\(:\)
\(0=x^{2}+2x-15\)
- step2: Swap the sides:
\(x^{2}+2x-15=0\)
- step3: Factor the expression:
\(\left(x-3\right)\left(x+5\right)=0\)
- step4: Separate into possible cases:
\(\begin{align}&x-3=0\\&x+5=0\end{align}\)
- step5: Solve the equation:
\(\begin{align}&x=3\\&x=-5\end{align}\)
- step6: Calculate:
\(x_{1}=-5,x_{2}=3\)
Let's analyze each quadratic relation step by step.
### a) For the equation \( y = x^2 - 8x \)
1. **Axis of Symmetry**:
The axis of symmetry for a quadratic equation in the form \( y = ax^2 + bx + c \) is given by the formula:
\[
x = -\frac{b}{2a}
\]
Here, \( a = 1 \) and \( b = -8 \).
\[
x = -\frac{-8}{2 \cdot 1} = \frac{8}{2} = 4
\]
So, the axis of symmetry is \( x = 4 \).
2. **Vertex**:
The vertex can be found using the x-coordinate of the axis of symmetry. We substitute \( x = 4 \) back into the equation to find the y-coordinate:
\[
y = (4)^2 - 8(4) = 16 - 32 = -16
\]
Therefore, the vertex is \( (4, -16) \).
3. **Y-Intercept**:
The y-intercept occurs when \( x = 0 \):
\[
y = 0^2 - 8(0) = 0
\]
Thus, the y-intercept is \( (0, 0) \).
4. **Zeros**:
The zeros (or x-intercepts) are found by setting \( y = 0 \):
\[
0 = x^2 - 8x
\]
Factoring gives:
\[
x(x - 8) = 0
\]
Thus, \( x_1 = 0 \) and \( x_2 = 8 \).
### Summary for \( y = x^2 - 8x \):
- **Axis of Symmetry**: \( x = 4 \)
- **Vertex**: \( (4, -16) \)
- **Y-Intercept**: \( (0, 0) \)
- **Zeros**: \( x_1 = 0, x_2 = 8 \)
---
### b) For the equation \( y = x^2 + 2x - 15 \)
1. **Axis of Symmetry**:
Using the same formula:
\[
x = -\frac{b}{2a} = -\frac{2}{2 \cdot 1} = -1
\]
So, the axis of symmetry is \( x = -1 \).
2. **Vertex**:
Substitute \( x = -1 \) back into the equation:
\[
y = (-1)^2 + 2(-1) - 15 = 1 - 2 - 15 = -16
\]
Therefore, the vertex is \( (-1, -16) \).
3. **Y-Intercept**:
The y-intercept occurs when \( x = 0 \):
\[
y = 0^2 + 2(0) - 15 = -15
\]
Thus, the y-intercept is \( (0, -15) \).
4. **Zeros**:
Set \( y = 0 \):
\[
0 = x^2 + 2x - 15
\]
Factoring gives:
\[
(x + 5)(x - 3) = 0
\]
Thus, \( x_1 = -5 \) and \( x_2 = 3 \).
### Summary for \( y = x^2 + 2x - 15 \):
- **Axis of Symmetry**: \( x = -1 \)
- **Vertex**: \( (-1, -16) \)
- **Y-Intercept**: \( (0, -15) \)
- **Zeros**: \( x_1 = -5, x_2 = 3 \)
### Final Results:
- **For \( y = x^2 - 8x \)**:
- Axis of Symmetry: \( x = 4 \)
- Vertex: \( (4, -16) \)
- Y-Intercept: \( (0, 0) \)
- Zeros: \( x_1 = 0, x_2 = 8 \)
- **For \( y = x^2 + 2x - 15 \)**:
- Axis of Symmetry: \( x = -1 \)
- Vertex: \( (-1, -16) \)
- Y-Intercept: \( (0, -15) \)
- Zeros: \( x_1 = -5, x_2 = 3 \)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution