(9) \( 9^{x+1}-10.3^{x}+1=0 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To solve the equation \( 9^{x+1} - 10 \cdot 3^{x} + 1 = 0 \), let's rewrite \( 9 \) as \( 3^2 \). Thus, \( 9^{x+1} = (3^2)^{x+1} = 3^{2(x+1)} = 3^{2x + 2} \). Now substituting this in gives us: \[ 3^{2x + 2} - 10 \cdot 3^{x} + 1 = 0 \] Let’s make the substitution \( y = 3^x \). Therefore, \( 3^{2x} = (3^x)^2 = y^2 \), and the equation becomes: \[ y^2 \cdot 3^2 - 10y + 1 = 0 \] Simplifying, we get: \[ 9y^2 - 10y + 1 = 0 \] Now, let’s use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 9, b = -10, c = 1 \): \[ y = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 9 \cdot 1}}{2 \cdot 9} = \frac{10 \pm \sqrt{100 - 36}}{18} = \frac{10 \pm \sqrt{64}}{18} \] This simplifies to: \[ y = \frac{10 \pm 8}{18} \] Calculating both possibilities: 1. \( y = \frac{18}{18} = 1 \) 2. \( y = \frac{2}{18} = \frac{1}{9} \) Next, we substitute back for \( y \): 1. If \( y = 1 \), then \( 3^x = 1 \) implies \( x = 0 \). 2. If \( y = \frac{1}{9} \), then \( 3^x = \frac{1}{9} \) implies \( x = -2 \). Thus, the solutions to the original equation are: \[ x = 0 \quad \text{and} \quad x = -2 \]