Question
13. \( \frac{a}{b c} \times\left(b^{2}-b c\right)= \)
Ask by Crawford Smith. in Malaysia
Jan 25,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
化简后的表达式为 \( \frac{a(b - c)}{c} \)。
Solution
将表达式 \( \frac{a}{b c} \times \left(b^{2} - b c\right) \) 化简如下:
\[
\frac{a}{b c} \times \left(b^{2} - b c\right) = \frac{a(b - c)}{c}
\]
**答案:**
\[
\frac{a}{b c} \times \left(b^{2} - b c\right) = \frac{a(b - c)}{c}
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To simplify \( \frac{a}{b c} \times (b^{2} - b c) \), let's first look at the expression inside the parentheses. We can factor out \( b \) from \( (b^{2} - b c) \): \[ b^{2} - b c = b(b - c) \] Now, substituting this back into the original expression, we have: \[ \frac{a}{b c} \times b(b - c) \] Next, the \( b \) in the numerator and the \( b \) in the denominator will cancel each other out: \[ \frac{a}{c} \times (b - c) \] So, the expression simplifies to: \[ \frac{a(b - c)}{c} \] Thus, \( \frac{a}{b c} \times (b^{2} - b c) = \frac{a(b - c)}{c} \).