Question
upstudy study bank question image url

6. Determine \( \lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3 x+2} \)

Ask by Frank Mcfarlane. in Mexico
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

El límite es -2.

Solution

Para determinar el límite: \[ \lim_{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3x+2} \] **Paso 1: Factorizar el numerador y el denominador.** Numerador: \[ x^{2} - 1 = (x - 1)(x + 1) \] Denominador: \[ x^{2} - 3x + 2 = (x - 1)(x - 2) \] **Paso 2: Simplificar la expresión.** \[ \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)} = \frac{x + 1}{x - 2} \quad \text{para} \quad x \neq 1 \] **Paso 3: Evaluar el límite sustituyendo \( x = 1 \).** \[ \lim_{x \rightarrow 1} \frac{x + 1}{x - 2} = \frac{1 + 1}{1 - 2} = \frac{2}{-1} = -2 \] **Respuesta final:** \[ \lim_{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3x+2} = -2 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the limit \[ \lim_{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3x+2}, \] we first substitute \(x = 1\): The numerator is: \[ 1^{2} - 1 = 0. \] The denominator is: \[ 1^{2} - 3 \cdot 1 + 2 = 1 - 3 + 2 = 0. \] Since both the numerator and denominator approach 0, we can apply L'Hôpital's Rule, which states that if we have the indeterminate form \(\frac{0}{0}\), we can take the derivative of the numerator and the derivative of the denominator. The derivative of the numerator \(x^{2} - 1\) is: \[ \frac{d}{dx}(x^2 - 1) = 2x. \] The derivative of the denominator \(x^{2} - 3x + 2\) is: \[ \frac{d}{dx}(x^2 - 3x + 2) = 2x - 3. \] Applying L'Hôpital's Rule gives us: \[ \lim_{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3x+2} = \lim_{x \rightarrow 1} \frac{2x}{2x - 3}. \] Now substituting \(x = 1\): The new numerator is: \[ 2 \cdot 1 = 2. \] The new denominator is: \[ 2 \cdot 1 - 3 = 2 - 3 = -1. \] Thus, we have: \[ \frac{2}{-1} = -2. \] Therefore, the limit is: \[ \lim_{x \rightarrow 1} \frac{x^{2}-1}{x^{2}-3x+2} = -2. \] Final answer: \[ \boxed{-2}. \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy