The rational expression \( \frac{2 x+3}{x+4}+\frac{8}{x} \) is equivalent to a.) \( \frac{2 x^{2}+11 x+32}{x(x+4)} \) b.) \( \frac{2 x+11}{2 x+4} \) c.) \( \frac{2 x^{2}-5 x-32}{x(x+4)} \) d.) \( \frac{2 x-11}{2 x-4} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To combine the rational expressions \( \frac{2x+3}{x+4} \) and \( \frac{8}{x} \), we'll find a common denominator and simplify. The common denominator between \( x+4 \) and \( x \) is \( x(x+4) \). Rewriting the expressions, we have: \[ \frac{2x+3}{x+4} = \frac{(2x+3)x}{x(x+4)} = \frac{2x^2 + 3x}{x(x+4)} \] And for the second term: \[ \frac{8}{x} = \frac{8(x+4)}{x(x+4)} = \frac{8x + 32}{x(x+4)} \] Now, we can combine the two fractions: \[ \frac{2x^2 + 3x + 8x + 32}{x(x+4)} = \frac{2x^2 + 11x + 32}{x(x+4)} \] Thus, the equivalent expression matches option (a): a.) \( \frac{2 x^{2}+11 x+32}{x(x+4)} \) So the answer is (a).