Question
upstudy study bank question image url

Use the information given about the angle \( \theta, \cos \theta=-\frac{\sqrt{3}}{3}, \frac{\pi}{2}<\theta<\pi \), to find the exact values of the foliowing. \( \begin{array}{llll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=-\frac{2 \sqrt{2}}{3} & \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=-\frac{1}{3} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \)

Ask by Burgess Turner. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \sin(2\theta) = -\frac{2\sqrt{2}}{3} \), \( \cos(2\theta) = -\frac{1}{3} \), \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 + \sqrt{3}}{6}} \), \( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 - \sqrt{3}}{6}} \)

Solution

To solve the problem, we start with the known condition \( \cos \theta = -\frac{\sqrt{3}}{3} \) and the range \( \frac{\pi}{2} < \theta < \pi \). This indicates that \( \theta \) is in the second quadrant, where sine is positive and cosine is negative. ### Step 1: Find \( \sin \theta \) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value of \( \cos \theta \): \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{3}{9} = 1 \] \[ \sin^2 \theta + \frac{1}{3} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \] Taking the square root, since \( \sin \theta \) is positive in the second quadrant: \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] ### Step 2: Calculate \( \sin(2\theta) \) and \( \cos(2\theta) \) Using the double angle formulas: \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] Substituting the values: \[ \sin(2\theta) = 2 \left(\frac{\sqrt{6}}{3}\right) \left(-\frac{\sqrt{3}}{3}\right) = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3} \] Now for \( \cos(2\theta) \): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \] Substituting the values: \[ \cos(2\theta) = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 \] \[ = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3} \] ### Step 3: Calculate \( \sin\left(\frac{\theta}{2}\right) \) and \( \cos\left(\frac{\theta}{2}\right) \) Using the half-angle formulas: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} \] Substituting the value of \( \cos \theta \): \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3}{3} + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{3}}{6}} \] For \( \cos\left(\frac{\theta}{2}\right) \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} \] Substituting the value of \( \cos \theta \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3}{3} - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{3}}{6}} \] ### Final Answers Thus, the exact values are: - (a) \( \sin(2\theta) = -\frac{2\sqrt{2}}{3} \) - (b) \( \cos(2\theta) = -\frac{1}{3} \) - (c) \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 + \sqrt{3}}{6}} \) - (d) \( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 - \sqrt{3}}{6}} \) (not requested but calculated for completeness)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

First, let's find the values related to the angle \(\theta\). Given that \(\cos \theta = -\frac{\sqrt{3}}{3}\) and \(\frac{\pi}{2} < \theta < \pi\), we know \(\theta\) is in the second quadrant, where the sine is positive. To find \(\sin \theta\), we can use the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{3}{9} = 1 \] \[ \sin^2 \theta + \frac{1}{3} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \] \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] Now with \(\sin \theta = \frac{\sqrt{6}}{3}\) and \(\cos \theta = -\frac{\sqrt{3}}{3}\): (a) To find \(\sin(2\theta)\): \[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \times \frac{\sqrt{6}}{3} \times -\frac{\sqrt{3}}{3} = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3} \] (b) To find \(\cos(2\theta)\): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 \] \[ = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3} \] (c) To find \(\sin \frac{\theta}{2}\) and \(\cos \frac{\theta}{2}\): Using the half-angle identities: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3+\sqrt{3}}{3}}{2}} = \sqrt{\frac{3+\sqrt{3}}{6}} = \frac{\sqrt{3+\sqrt{3}}}{\sqrt{6}} \] (d) To find \(\cos \frac{\theta}{2}\): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{3}}{3}}{2}} = \sqrt{\frac{3-\sqrt{3}}{6}} = \frac{\sqrt{3-\sqrt{3}}}{\sqrt{6}} \] So the final results are: \[ \text{(a) } \sin(2\theta) = -\frac{2\sqrt{2}}{3}, \quad \text{(b) } \cos(2\theta) = -\frac{1}{3} \] \[ \text{(c) } \sin \frac{\theta}{2} = \frac{\sqrt{3+\sqrt{3}}}{\sqrt{6}}, \quad \text{(d) } \cos \frac{\theta}{2} = \frac{\sqrt{3-\sqrt{3}}}{\sqrt{6}} \]

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy