Use the information given about the angle \( \theta, \cos \theta=-\frac{\sqrt{3}}{3}, \frac{\pi}{2}<\theta<\pi \), to find the exact values of the foliowing. \( \begin{array}{llll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=-\frac{2 \sqrt{2}}{3} & \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=-\frac{1}{3} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
First, let's find the values related to the angle \(\theta\). Given that \(\cos \theta = -\frac{\sqrt{3}}{3}\) and \(\frac{\pi}{2} < \theta < \pi\), we know \(\theta\) is in the second quadrant, where the sine is positive. To find \(\sin \theta\), we can use the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{3}{9} = 1 \] \[ \sin^2 \theta + \frac{1}{3} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \] \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] Now with \(\sin \theta = \frac{\sqrt{6}}{3}\) and \(\cos \theta = -\frac{\sqrt{3}}{3}\): (a) To find \(\sin(2\theta)\): \[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \times \frac{\sqrt{6}}{3} \times -\frac{\sqrt{3}}{3} = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3} \] (b) To find \(\cos(2\theta)\): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 \] \[ = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3} \] (c) To find \(\sin \frac{\theta}{2}\) and \(\cos \frac{\theta}{2}\): Using the half-angle identities: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3+\sqrt{3}}{3}}{2}} = \sqrt{\frac{3+\sqrt{3}}{6}} = \frac{\sqrt{3+\sqrt{3}}}{\sqrt{6}} \] (d) To find \(\cos \frac{\theta}{2}\): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{3}}{3}}{2}} = \sqrt{\frac{3-\sqrt{3}}{6}} = \frac{\sqrt{3-\sqrt{3}}}{\sqrt{6}} \] So the final results are: \[ \text{(a) } \sin(2\theta) = -\frac{2\sqrt{2}}{3}, \quad \text{(b) } \cos(2\theta) = -\frac{1}{3} \] \[ \text{(c) } \sin \frac{\theta}{2} = \frac{\sqrt{3+\sqrt{3}}}{\sqrt{6}}, \quad \text{(d) } \cos \frac{\theta}{2} = \frac{\sqrt{3-\sqrt{3}}}{\sqrt{6}} \]