Pregunta
upstudy study bank question image url

Use the information given about the angle \( \theta, \cos \theta=-\frac{\sqrt{3}}{3}, \frac{\pi}{2}<\theta<\pi \), to find the exact values of the foliowing. \( \begin{array}{llll}\text { (a) } \sin (2 \theta) & \text { (b) } \cos (2 \theta) & \text { (c) } \sin \frac{\theta}{2} & \text { (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=-\frac{2 \sqrt{2}}{3} & \text { (Type an exact answer, using radicals as needed.) } \\ \text { (b) } \cos (2 \theta)=-\frac{1}{3} \text { (Type an exact answer, using radicals as needed.) } \\ \text { (c) } \sin \frac{\theta}{2}=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \)

Ask by Burgess Turner. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \sin(2\theta) = -\frac{2\sqrt{2}}{3} \), \( \cos(2\theta) = -\frac{1}{3} \), \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 + \sqrt{3}}{6}} \), \( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 - \sqrt{3}}{6}} \)

Solución

To solve the problem, we start with the known condition \( \cos \theta = -\frac{\sqrt{3}}{3} \) and the range \( \frac{\pi}{2} < \theta < \pi \). This indicates that \( \theta \) is in the second quadrant, where sine is positive and cosine is negative. ### Step 1: Find \( \sin \theta \) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value of \( \cos \theta \): \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{3}{9} = 1 \] \[ \sin^2 \theta + \frac{1}{3} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \] Taking the square root, since \( \sin \theta \) is positive in the second quadrant: \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] ### Step 2: Calculate \( \sin(2\theta) \) and \( \cos(2\theta) \) Using the double angle formulas: \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] Substituting the values: \[ \sin(2\theta) = 2 \left(\frac{\sqrt{6}}{3}\right) \left(-\frac{\sqrt{3}}{3}\right) = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3} \] Now for \( \cos(2\theta) \): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \] Substituting the values: \[ \cos(2\theta) = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 \] \[ = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3} \] ### Step 3: Calculate \( \sin\left(\frac{\theta}{2}\right) \) and \( \cos\left(\frac{\theta}{2}\right) \) Using the half-angle formulas: \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos \theta}{2}} \] Substituting the value of \( \cos \theta \): \[ \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3}{3} + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{3 + \sqrt{3}}{6}} \] For \( \cos\left(\frac{\theta}{2}\right) \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} \] Substituting the value of \( \cos \theta \): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \left(-\frac{\sqrt{3}}{3}\right)}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3}{3} - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{3 - \sqrt{3}}{6}} \] ### Final Answers Thus, the exact values are: - (a) \( \sin(2\theta) = -\frac{2\sqrt{2}}{3} \) - (b) \( \cos(2\theta) = -\frac{1}{3} \) - (c) \( \sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 + \sqrt{3}}{6}} \) - (d) \( \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{3 - \sqrt{3}}{6}} \) (not requested but calculated for completeness)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's find the values related to the angle \(\theta\). Given that \(\cos \theta = -\frac{\sqrt{3}}{3}\) and \(\frac{\pi}{2} < \theta < \pi\), we know \(\theta\) is in the second quadrant, where the sine is positive. To find \(\sin \theta\), we can use the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^2 \theta + \left(-\frac{\sqrt{3}}{3}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{3}{9} = 1 \] \[ \sin^2 \theta + \frac{1}{3} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{3} = \frac{2}{3} \] \[ \sin \theta = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] Now with \(\sin \theta = \frac{\sqrt{6}}{3}\) and \(\cos \theta = -\frac{\sqrt{3}}{3}\): (a) To find \(\sin(2\theta)\): \[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \times \frac{\sqrt{6}}{3} \times -\frac{\sqrt{3}}{3} = -\frac{2\sqrt{18}}{9} = -\frac{6\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3} \] (b) To find \(\cos(2\theta)\): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta = \left(-\frac{\sqrt{3}}{3}\right)^2 - \left(\frac{\sqrt{6}}{3}\right)^2 \] \[ = \frac{3}{9} - \frac{6}{9} = -\frac{3}{9} = -\frac{1}{3} \] (c) To find \(\sin \frac{\theta}{2}\) and \(\cos \frac{\theta}{2}\): Using the half-angle identities: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3+\sqrt{3}}{3}}{2}} = \sqrt{\frac{3+\sqrt{3}}{6}} = \frac{\sqrt{3+\sqrt{3}}}{\sqrt{6}} \] (d) To find \(\cos \frac{\theta}{2}\): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{3}}{2}} = \sqrt{\frac{\frac{3 - \sqrt{3}}{3}}{2}} = \sqrt{\frac{3-\sqrt{3}}{6}} = \frac{\sqrt{3-\sqrt{3}}}{\sqrt{6}} \] So the final results are: \[ \text{(a) } \sin(2\theta) = -\frac{2\sqrt{2}}{3}, \quad \text{(b) } \cos(2\theta) = -\frac{1}{3} \] \[ \text{(c) } \sin \frac{\theta}{2} = \frac{\sqrt{3+\sqrt{3}}}{\sqrt{6}}, \quad \text{(d) } \cos \frac{\theta}{2} = \frac{\sqrt{3-\sqrt{3}}}{\sqrt{6}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad