Reduce to reduced row echelon form. \( \left[\begin{array}{cccc}-5 & -15 & 6 & 40 \\ 3 & 9 & -7 & -41 \\ 1 & 3 & -3 & -17 \\ -15 & -45 & 18 & 120\end{array}\right] \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To reduce the given matrix to reduced row echelon form, we can perform a series of row operations. Let's denote the matrix as \( A \): \[ A = \left[\begin{array}{cccc}-5 & -15 & 6 & 40 \\ 3 & 9 & -7 & -41 \\ 1 & 3 & -3 & -17 \\ -15 & -45 & 18 & 120\end{array}\right] \] We will perform the following steps: 1. **Row Swaps**: Start by swapping \( R_1 \) and \( R_3 \) to get a leading 1 at the top: \[ \left[\begin{array}{cccc} 1 & 3 & -3 & -17 \\ 3 & 9 & -7 & -41 \\ -5 & -15 & 6 & 40 \\ -15 & -45 & 18 & 120\end{array}\right] \] 2. **Eliminate below the leading 1 in the first column**: - Replace \( R_2 \) with \( R_2 - 3R_1 \) - Replace \( R_3 \) with \( R_3 + 5R_1 \) - Replace \( R_4 \) with \( R_4 + 15R_1 \) Calculating those gives: \[ R_2: 3 - 3(1) = 0, \quad 9 - 3(3) = 0, \quad -7 + 3(3) = 2, \quad -41 + 3(17) = 10 \] \[ R_3: -5 + 5(1) = 0, \quad -15 + 5(3) = 0, \quad 6 - 5(3) = -9, \quad 40 - 5(17) = -45 \] \[ R_4: -15 + 15(1) = 0, \quad -45 + 15(3) = 0, \quad 18 - 15(3) = -27, \quad 120 - 15(17) = -15 \] Thus, our matrix changes to: \[ \left[\begin{array}{cccc} 1 & 3 & -3 & -17 \\ 0 & 0 & 2 & 10 \\ 0 & 0 & -9 & -45 \\ 0 & 0 & -27 & -15 \end{array}\right] \] 3. **Normalize the second row** by multiplying \( R_2 \) by \( \frac{1}{2} \): \[ R_2: \left[ 0, 0, 1, 5 \right] \] Our matrix now looks like this: \[ \left[\begin{array}{cccc} 1 & 3 & -3 & -17 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & -9 & -45 \\ 0 & 0 & -27 & -15 \end{array}\right] \] 4. **Eliminate the third column** from \( R_3 \) and \( R_4 \): - For \( R_3 \), replace it with \( R_3 + 9R_2 \) - For \( R_4 \), replace it with \( R_4 + 27R_2 \) This results in: \[ R_3: 0 + 9(0) = 0, \quad 0 + 9(0) = 0, \quad -9 + 9(1) = 0, \quad -45 + 9(5) = 0 \] \[ R_4: 0 + 27(0) = 0, \quad 0 + 27(0) = 0, \quad -27 + 27(1) = 0, \quad -15 + 27(5) = 120 \] So, we update our matrix to: \[ \left[\begin{array}{cccc} 1 & 3 & -3 & -17 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right] \] 5. **Now eliminate elements above the pivot in the second column based on R2**: - Replace \( R_1 \) using \( R_1 - 3R_2 \): \[ R_1: 1 - 0,