Answer
Here are the factorizations for the given expressions:
a) \( m y + 5 n y + m x + 5 n x = (m + 5n)(y + x) \)
c) \( 3 p x + 6 p y + 2 q x + 4 q y = (3p + 2q)(x + 2y) \)
e) \( 16 - x^{2} - 4y + x y = -(x - y + 4)(x - 4) \)
g) \( x^{2} - x^{2} + x + y = x + y \)
i) \( 10 x^{2} + 5 x y + 6 x y + 3 y^{2} = (5x + 3y)(2x + y) \)
k) \( 27 a^{2} x - 12 b^{2} x - 18 a^{2} y + 8 b^{2} y = (3a + 2b)(3a - 2b)(3x - 2y) \)
m) \( 16 x^{2} - 9 y^{2} + (4 x - 3 y)(x + 2 y) = 5(x + y)(4x - 3y) \)
o) \( 5 p^{2} - 2 q - 5 q^{2} + 2 p = (5p + 5q + 2)(p - q) \)
Solution
Factor the expression by following steps:
- step0: Factor:
\(3px+6py+2qx+4qy\)
- step1: Factor the expression:
\(3p\left(x+2y\right)+2q\left(x+2y\right)\)
- step2: Factor the expression:
\(\left(3p+2q\right)\left(x+2y\right)\)
Factor the expression \( m y+5 n y+m x+5 n x \).
Factor the expression by following steps:
- step0: Factor:
\(my+5ny+mx+5nx\)
- step1: Rewrite the expression:
\(my+mx+5ny+5nx\)
- step2: Factor the expression:
\(m\left(y+x\right)+5n\left(y+x\right)\)
- step3: Factor the expression:
\(\left(m+5n\right)\left(y+x\right)\)
Factor the expression \( 16-x^{2}-4 y+x y \).
Factor the expression by following steps:
- step0: Factor:
\(16-x^{2}-4y+xy\)
- step1: Rewrite the expression:
\(-x^{2}+4x+yx-4y-4x+16\)
- step2: Factor the expression:
\(-x\left(x-4\right)+y\left(x-4\right)-4\left(x-4\right)\)
- step3: Factor the expression:
\(\left(-x+y-4\right)\left(x-4\right)\)
- step4: Factor the expression:
\(-\left(x-y+4\right)\left(x-4\right)\)
Factor the expression \( 5 p^{2}-2 q-5 q^{2}+2 p \).
Factor the expression by following steps:
- step0: Factor:
\(5p^{2}-2q-5q^{2}+2p\)
- step1: Rewrite the expression:
\(5p^{2}-5pq+5qp-5q^{2}+2p-2q\)
- step2: Factor the expression:
\(5p\left(p-q\right)+5q\left(p-q\right)+2\left(p-q\right)\)
- step3: Factor the expression:
\(\left(5p+5q+2\right)\left(p-q\right)\)
Factor the expression \( 10 x^{2}+5 x y+6 x y+3 y^{2 \).
Factor the expression by following steps:
- step0: Factor:
\(10x^{2}+5xy+6xy+3y^{2}\)
- step1: Add the terms:
\(10x^{2}+11xy+3y^{2}\)
- step2: Rewrite the expression:
\(10x^{2}+\left(5+6\right)xy+3y^{2}\)
- step3: Rewrite the expression:
\(10x^{2}+5xy+6yx+3y^{2}\)
- step4: Factor the expression:
\(5x\left(2x+y\right)+3y\left(2x+y\right)\)
- step5: Factor the expression:
\(\left(5x+3y\right)\left(2x+y\right)\)
Factor the expression \( 27 a^{2} x-12 b^{2} x-18 a^{2} y+8 b^{2} y \).
Factor the expression by following steps:
- step0: Factor:
\(27a^{2}x-12b^{2}x-18a^{2}y+8b^{2}y\)
- step1: Rewrite the expression:
\(27a^{2}x-18a^{2}y-12b^{2}x+8b^{2}y\)
- step2: Factor the expression:
\(9a^{2}\left(3x-2y\right)-4b^{2}\left(3x-2y\right)\)
- step3: Factor the expression:
\(\left(9a^{2}-4b^{2}\right)\left(3x-2y\right)\)
- step4: Factor the expression:
\(\left(3a+2b\right)\left(3a-2b\right)\left(3x-2y\right)\)
Factor the expression \( 16 x^{2}-9 y^{2}+(4 x-3 y)(x+2 y) \).
Factor the expression by following steps:
- step0: Factor:
\(16x^{2}-9y^{2}+\left(4x-3y\right)\left(x+2y\right)\)
- step1: Factor the expression:
\(\left(4x+3y+x+2y\right)\left(4x-3y\right)\)
- step2: Factor the expression:
\(5\left(x+y\right)\left(4x-3y\right)\)
Here are the factorizations for the given expressions:
a) \( m y + 5 n y + m x + 5 n x \)
To factor this expression, we can group the terms:
\[
= (m + 5n)(y + x)
\]
---
c) \( 3 p x + 6 p y + 2 q x + 4 q y \)
We can factor by grouping:
\[
= (3p + 2q)(x + 2y)
\]
---
e) \( 16 - x^{2} - 4y + x y \)
Rearranging and factoring gives:
\[
= -(x - y + 4)(x - 4)
\]
---
g) \( x^{2} - x^{2} + x + y \)
This simplifies to:
\[
= x + y
\]
However, it cannot be factored further since it is already in its simplest form.
---
i) \( 10 x^{2} + 5 x y + 6 x y + 3 y^{2} \)
Combining like terms and factoring gives:
\[
= (5x + 3y)(2x + y)
\]
---
k) \( 27 a^{2} x - 12 b^{2} x - 18 a^{2} y + 8 b^{2} y \)
Factoring by grouping results in:
\[
= (3a + 2b)(3a - 2b)(3x - 2y)
\]
---
m) \( 16 x^{2} - 9 y^{2} + (4 x - 3 y)(x + 2 y) \)
This can be factored as:
\[
= 5(x + y)(4x - 3y)
\]
---
o) \( 5 p^{2} - 2 q - 5 q^{2} + 2 p \)
Rearranging and factoring gives:
\[
= (5p + 5q + 2)(p - q)
\]
---
If you have any further questions or need additional assistance, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution