common bracket. Eydercise 1: Factorise a) \( m y+5 n y+m x+5 n x \) c) \( 3 p x+6 p y+2 q x+4 q y \) e) \( 16-x^{2}-4 y+x y \) g) \( x^{2}-x^{2}+x+y \) i) \( 10 x^{2}+5 x y+6 x y+3 y^{2} \) k) \( 27 a^{2} x-12 b^{2} x-18 a^{2} y+8 b^{2} y \) m) \( 16 x^{2}-9 y^{2}+(4 x-3 y)(x+2 y \) o) \( 5 p^{2}-2 q-5 q^{2}+2 p \) in
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
When factoring expressions like the ones above, it's often useful to look for common factors or patterns such as the distributive property or difference of squares. For example, in expression \( m y + 5 n y + m x + 5 n x \), you can group terms and factor out the common binomials to make the expression neater and easier to manipulate! Another fun trick in factorization is keeping an eye out for quadratic patterns. For instance, in \( 16x^{2} - 9y^{2} \), you can recognize this as a difference of squares, allowing you to apply the formula \( a^{2} - b^{2} = (a + b)(a - b) \). This method can simplify more complex polynomials, turning a daunting equation into manageable pieces!