Question
upstudy study bank question image url

The following integral converges. Evaluate the integral without using tables. \( \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x \) \( \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x=\square \) (Type an exact answer.)

Ask by Curry Burns. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral evaluates to \(4\,\ln\,2\).

Solution

To evaluate the integral \[ \int_{-1}^{\infty} \frac{4}{x^{2}+5x+6} \, dx, \] we first factor the denominator: \[ x^2 + 5x + 6 = (x + 2)(x + 3). \] So the integral becomes \[ \int_{-1}^{\infty} \frac{4}{(x + 2)(x + 3)} \, dx. \] Next, we use partial fractions to decompose the integrand: \[ \frac{4}{(x + 2)(x + 3)} = \frac{A}{x + 2} + \frac{B}{x + 3}. \] Multiplying both sides by \((x + 2)(x + 3)\): \[ 4 = A(x + 3) + B(x + 2). \] To find \(A\) and \(B\), we can set \(x = -3\) and \(x = -2\): \[ \text{For } x = -3: \quad 4 = A(0) + B(-1) \implies B = -4. \] \[ \text{For } x = -2: \quad 4 = A(1) + B(0) \implies A = 4. \] Thus, the integrand becomes: \[ \frac{4}{(x + 2)(x + 3)} = \frac{4}{x + 2} - \frac{4}{x + 3}. \] Now, integrate term by term: \[ \int \left(\frac{4}{x + 2} - \frac{4}{x + 3}\right) \, dx = 4\ln|x + 2| - 4\ln|x + 3| + C = 4\ln\left(\frac{x + 2}{x + 3}\right) + C. \] Evaluate the definite integral from \(-1\) to \(\infty\): \[ \lim_{x \to \infty} \left[4\ln\left(\frac{x + 2}{x + 3}\right)\right] - \left[4\ln\left(\frac{-1 + 2}{-1 + 3}\right)\right]. \] As \(x \to \infty\), \[ \frac{x + 2}{x + 3} \to 1 \implies \ln\left(\frac{x + 2}{x + 3}\right) \to 0. \] At \(x = -1\), \[ \frac{-1 + 2}{-1 + 3} = \frac{1}{2}, \] so the integral becomes: \[ 0 - 4\ln\left(\frac{1}{2}\right) = 4\ln 2. \] **Answer:** \(4\,\ln\,2\)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To evaluate the integral \( \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x \), we start by factoring the quadratic in the denominator. The expression \( x^2 + 5x + 6 \) factors as \( (x+2)(x+3) \). So we rewrite the integral: \[ \int_{-1}^{\infty} \frac{4}{(x+2)(x+3)} \, dx \] Next, we can use partial fraction decomposition: \[ \frac{4}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3} \] Multiplying through by \( (x+2)(x+3) \) gives: \[ 4 = A(x+3) + B(x+2) \] Setting \( x = -2 \): \[ 4 = A(1) + B(0) \implies A = 4 \] Setting \( x = -3 \): \[ 4 = A(0) + B(-1) \implies B = -4 \] Now we have: \[ \frac{4}{(x+2)(x+3)} = \frac{4}{x+2} - \frac{4}{x+3} \] Thus, the integral becomes: \[ \int_{-1}^{\infty} \left( \frac{4}{x+2} - \frac{4}{x+3} \right) dx \] We can evaluate these integrals separately. 1. \( \int \frac{4}{x+2} \, dx = 4 \ln |x+2| \) 2. \( \int \frac{4}{x+3} \, dx = 4 \ln |x+3| \) So we have: \[ \int_{-1}^{\infty} \frac{4}{x+2} \, dx - \int_{-1}^{\infty} \frac{4}{x+3} \, dx \] Evaluating the limits, first for \( \int_{-1}^\infty \frac{4}{x+2} \, dx \): \[ \lim_{b \to \infty} \left[ 4 \ln |b+2| - 4 \ln |1| \right] = \lim_{b \to \infty} 4 \ln(b+2) \to \infty \] And for \( \int_{-1}^\infty \frac{4}{x+3} \, dx \): \[ \lim_{b \to \infty} \left[ 4 \ln |b+3| - 4 \ln |0| \right] \to \infty \] Both integrals diverge as \( b \to \infty \). However, when taking the limit for the definite bounds from \( -1 \) to \( a \) where \( a \) approaches infinity: \[ \int_{-1}^{a} \left( \frac{4}{x+2} - \frac{4}{x+3} \right) dx \] Evaluating from \(-1\) to \(a\), simplifies to \(4 (\ln(a+2) - \ln(1)) - 4 (\ln(a+3) - \ln(0))\) simplifies to \(4 \ln\left(\frac{a+2}{a+3}\right)\), recognizing that this approaches \(4\ln\left(1\right) = 0\) as \(a\) approaches infinity. Thus, the definite integral converges to: \[ \int_{-1}^{\infty} \frac{4}{(x+2)(x+3)} \, dx = 2 \ln(2) \] So the final answer is: \[ \int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x = 2 \ln(2) \] \(\int_{-1}^{\infty} \frac{4}{x^{2}+5 x+6} d x = 2 \ln(2)\)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy