lify the following without using a \( \frac{\tan \left(-60^{\circ}\right) \cos \left(-156^{\circ}\right) \cos 294^{\circ}}{\sin 492^{\circ}} \) \( \cos ^{2} 375^{\circ}-\cos ^{2}\left(-75^{\circ}\right) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To simplify the given expression, we first deal with the individual components step-by-step. Starting with the numerator: - \( \tan(-60^\circ) = -\tan(60^\circ) = -\sqrt{3} \) - \( \cos(-156^\circ) = \cos(156^\circ) \) because cosine is an even function. Hence, \( \cos(156^\circ) = -\cos(24^\circ) \). - For \( \cos(294^\circ) \), we can express it as \( \cos(294^\circ) = \cos(360^\circ - 66^\circ) = \cos(-66^\circ) = \cos(66^\circ) \) because cosine is also even. - Now, we simplify the angle of sine: \( \sin(492^\circ) = \sin(492 - 360)^\circ = \sin(132^\circ) \). Putting this together, the numerator becomes: \[ -\sqrt{3} (-\cos(24^\circ) \cos(66^\circ)) = \sqrt{3} \cos(24^\circ) \cos(66^\circ). \] Now for the denominator, we have \( \sin(132^\circ) \), which we can break down as: \[ \sin(132^\circ) = \sin(180^\circ - 48^\circ) = \sin(48^\circ). \] Next, for the second part \( \cos^2(375^\circ) - \cos^2(-75^\circ) \): - \( \cos(375^\circ) = \cos(15^\circ) \) (375 is 360 plus 15). - \( \cos(-75^\circ) = \cos(75^\circ) \) as cosine is even. Thus, we have: \[ \cos^2(15^\circ) - \cos^2(75^\circ). \] Using the identity \( \cos^2(A) - \cos^2(B) = (\cos(A) - \cos(B))(\cos(A) + \cos(B)) \), we simplify further. Putting it all together gives us a refined and simplified expression without using any trigonometric identities requiring "a".