Question
upstudy study bank question image url

lify the following without using a \( \frac{\tan \left(-60^{\circ}\right) \cos \left(-156^{\circ}\right) \cos 294^{\circ}}{\sin 492^{\circ}} \) \( \cos ^{2} 375^{\circ}-\cos ^{2}\left(-75^{\circ}\right) \)

Ask by Byrd Mejia. in South Africa
Jan 29,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Both expressions simplify to \( \frac{\sqrt{3}}{2} \).

Solution

Let's simplify both expressions step by step. ### **1. Simplifying \( \frac{\tan(-60^{\circ}) \cos(-156^{\circ}) \cos 294^{\circ}}{\sin 492^{\circ}} \):** 1. **Adjust Angles to Standard Positions:** - \( \tan(-60^{\circ}) = -\tan(60^{\circ}) \) - \( \cos(-156^{\circ}) = \cos(156^{\circ}) \) - \( \sin(492^{\circ}) = \sin(492^{\circ} - 360^{\circ}) = \sin(132^{\circ}) \) 2. **Substitute Known Values:** - \( \tan(60^{\circ}) = \sqrt{3} \) - \( \cos(156^{\circ}) = -\cos(24^{\circ}) \) (since \( 156^{\circ} = 180^{\circ} - 24^{\circ} \)) - \( \cos(294^{\circ}) = \cos(66^{\circ}) \) (since \( 294^{\circ} = 360^{\circ} - 66^{\circ} \)) - \( \sin(132^{\circ}) = \sin(48^{\circ}) \) (since \( 132^{\circ} = 180^{\circ} - 48^{\circ} \)) 3. **Substitute into the Expression:** \[ \frac{-\sqrt{3} \cdot (-\cos(24^{\circ})) \cdot \cos(66^{\circ})}{\sin(48^{\circ})} = \frac{\sqrt{3} \cdot \cos(24^{\circ}) \cdot \cos(66^{\circ})}{\sin(48^{\circ})} \] 4. **Use Product-to-Sum Identity:** \[ \cos(24^{\circ}) \cos(66^{\circ}) = \frac{\cos(90^{\circ}) + \cos(-42^{\circ})}{2} = \frac{0 + \cos(42^{\circ})}{2} = \frac{\cos(42^{\circ})}{2} \] 5. **Simplify Further:** \[ \frac{\sqrt{3} \cdot \frac{\cos(42^{\circ})}{2}}{\sin(48^{\circ})} = \frac{\sqrt{3} \cdot \cos(42^{\circ})}{2 \sin(48^{\circ})} \] Since \( \cos(42^{\circ}) = \sin(48^{\circ}) \): \[ \frac{\sqrt{3} \cdot \sin(48^{\circ})}{2 \sin(48^{\circ})} = \frac{\sqrt{3}}{2} \] ### **2. Simplifying \( \cos^2(375^{\circ}) - \cos^2(-75^{\circ}) \):** 1. **Adjust Angles to Standard Positions:** - \( \cos(375^{\circ}) = \cos(15^{\circ}) \) (since \( 375^{\circ} = 360^{\circ} + 15^{\circ} \)) - \( \cos(-75^{\circ}) = \cos(75^{\circ}) \) 2. **Apply the Difference of Squares Identity:** \[ \cos^2A - \cos^2B = -\sin(A + B) \sin(A - B) \] Let \( A = 15^{\circ} \) and \( B = 75^{\circ} \): \[ \cos^2(15^{\circ}) - \cos^2(75^{\circ}) = -\sin(90^{\circ}) \sin(-60^{\circ}) = -1 \cdot (-\frac{\sqrt{3}}{2}) = \frac{\sqrt{3}}{2} \] ### **Final Simplified Results:** Both expressions simplify to: \[ \frac{\sqrt{3}}{2} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify the given expression, we first deal with the individual components step-by-step. Starting with the numerator: - \( \tan(-60^\circ) = -\tan(60^\circ) = -\sqrt{3} \) - \( \cos(-156^\circ) = \cos(156^\circ) \) because cosine is an even function. Hence, \( \cos(156^\circ) = -\cos(24^\circ) \). - For \( \cos(294^\circ) \), we can express it as \( \cos(294^\circ) = \cos(360^\circ - 66^\circ) = \cos(-66^\circ) = \cos(66^\circ) \) because cosine is also even. - Now, we simplify the angle of sine: \( \sin(492^\circ) = \sin(492 - 360)^\circ = \sin(132^\circ) \). Putting this together, the numerator becomes: \[ -\sqrt{3} (-\cos(24^\circ) \cos(66^\circ)) = \sqrt{3} \cos(24^\circ) \cos(66^\circ). \] Now for the denominator, we have \( \sin(132^\circ) \), which we can break down as: \[ \sin(132^\circ) = \sin(180^\circ - 48^\circ) = \sin(48^\circ). \] Next, for the second part \( \cos^2(375^\circ) - \cos^2(-75^\circ) \): - \( \cos(375^\circ) = \cos(15^\circ) \) (375 is 360 plus 15). - \( \cos(-75^\circ) = \cos(75^\circ) \) as cosine is even. Thus, we have: \[ \cos^2(15^\circ) - \cos^2(75^\circ). \] Using the identity \( \cos^2(A) - \cos^2(B) = (\cos(A) - \cos(B))(\cos(A) + \cos(B)) \), we simplify further. Putting it all together gives us a refined and simplified expression without using any trigonometric identities requiring "a".

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy