Question
upstudy study bank question image url

O Radicals and Quadratic Functions Solving a radical equation with two radicals that simplifies to sqrt \( (\mathrm{x})=\mathrm{a} \) Solve for \( y \), where \( y \) is a real number. \( 5+\sqrt{y}=\sqrt{y+55} \) If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".

Ask by Ortiz Dickson. in the United States
Feb 02,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( y = 9 \)

Solution

To solve the equation: \[ 5 + \sqrt{y} = \sqrt{y + 55} \] **Step 1: Isolate the radicals** First, let's isolate one of the square roots: \[ \sqrt{y + 55} - \sqrt{y} = 5 \] **Step 2: Substitute and simplify** Let \( \sqrt{y} = a \). Then, \( \sqrt{y + 55} = a + 5 \). Substitute into the equation: \[ (a + 5)^2 = a^2 + 55 \] Expand and simplify: \[ a^2 + 10a + 25 = a^2 + 55 \] \[ 10a + 25 = 55 \] \[ 10a = 30 \] \[ a = 3 \] **Step 3: Solve for \( y \)** Since \( a = \sqrt{y} \): \[ \sqrt{y} = 3 \implies y = 9 \] **Step 4: Verify the solution** Substitute \( y = 9 \) back into the original equation: \[ 5 + \sqrt{9} = 5 + 3 = 8 \] \[ \sqrt{9 + 55} = \sqrt{64} = 8 \] Both sides are equal, so \( y = 9 \) is a valid solution. **Conclusion** The solution to the equation is: \[ \boxed{9} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Para resolver a equação \( 5+\sqrt{y}=\sqrt{y+55} \), começamos isolando os radicais. Primeiro, subtraímos \( \sqrt{y} \) de ambos os lados: \[ \sqrt{y+55} - \sqrt{y} = 5 \] Agora, elevamos ambos os lados ao quadrado para eliminar a raiz: \[(\sqrt{y+55} - \sqrt{y})^2 = 5^2\] Expandindo a equação: \[ y + 55 - 2\sqrt{y+55}\sqrt{y} + y = 25 \] Combinando os termos semelhantes, temos: \[ 2y + 55 - 25 = 2\sqrt{y(y+55)} \] Isso se simplifica para: \[ 2y + 30 = 2\sqrt{y(y+55)} \] Dividindo por 2, obtemos: \[ y + 15 = \sqrt{y(y+55)} \] Elevamos ambos os lados ao quadrado novamente: \[ (y + 15)^2 = y(y + 55) \] Expandindo e simplificando: \[ y^2 + 30y + 225 = y^2 + 55y \] Portanto: \[ 30y + 225 = 55y \] Reorganizando dá: \[ 225 = 55y - 30y \] \[ 225 = 25y \] Finalmente, dividindo ambos os lados por 25: \[ y = 9 \] Agora, precisamos verificar se esta solução original é válida. Substituindo \( y = 9 \) na equação original, obtemos: \[ 5 + \sqrt{9} = \sqrt{9 + 55} \] \[ 5 + 3 = \sqrt{64} \] \[ 8 = 8 \] (Válido!) Portanto, a solução para a equação é \( y = 9 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy