Question
upstudy study bank question image url

b) Bepaal vervolgens (hence) die waarde van \( \sqrt[4]{3375} \). Vind die kleinste getal wat deelbaar (divisible) is deur \( 32,36,48 \).

Ask by Barber Wagner. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The value of \( \sqrt[4]{3375} \) is approximately 7.62. The smallest number divisible by 32, 36, and 48 is 288.

Solution

**b) Bepaal die waarde van \( \sqrt[4]{3375} \).** Om die vierde wortel van 3375 te bereken, kan ons die volgende stappe volg: 1. **Priemfaktorisering van 3375:** \[ 3375 = 15^3 = (3 \times 5)^3 = 3^3 \times 5^3 \] Aangesien beide 3 en 5 tot die derde mag verhewe is, is 3375 nie 'n perfekte vierde krag nie. Ons sal dus 'n benaderde waarde gebruik. 2. **Benadering deur berekening:** Ons soek \( x \) sodat: \[ x^4 = 3375 \] Ons weet dat: \[ 7^4 = 2401 \quad \text{en} \quad 8^4 = 4096 \] 3375 lê tussen 2401 en 4096, dus is \( x \) tussen 7 en 8. Nou bereken ons \( 7.6^4 \): \[ 7.6^4 = 7.6 \times 7.6 \times 7.6 \times 7.6 \approx 3336.22 \] Dit is naby 3375, so ons kan verder verfyn deur klein veranderinge by te voeg: By benadering vind ons: \[ \sqrt[4]{3375} \approx 7.62 \] **Dus, \( \sqrt[4]{3375} \approx 7.62 \).** --- **Vind die kleinste getal wat deelbaar is deur 32, 36 en 48.** Ons gaan die **minste gemeenskaplike veelvoud (LGM)** van die drie getalle bepaal deur hul priemfaktorisering. 1. **Priemfaktorisering:** \[ 32 = 2^5 \] \[ 36 = 2^2 \times 3^2 \] \[ 48 = 2^4 \times 3^1 \] 2. **Bepaal die hoogste mag vir elke priemgetal:** - Vir 2: Die hoogste mag tussen 32, 36 en 48 is \( 2^5 \). - Vir 3: Die hoogste mag tussen 32, 36 en 48 is \( 3^2 \). 3. **Bereken die LGM:** \[ \text{LGM} = 2^5 \times 3^2 = 32 \times 9 = 288 \] **Dus, die kleinste getal wat deelbaar is deur 32, 36 en 48 is 288.**

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Om \( \sqrt[4]{3375} \) te bepaal, kan ons eers 3375 ontbinde in priemgetalle. Dit is \( 3375 = 3^3 \times 5^3 \). Wanneer ons die vierde wortel neem, kry ons: \[ \sqrt[4]{3375} = \sqrt[4]{3^3 \times 5^3} = 3^{3/4} \times 5^{3/4} = \sqrt[4]{3^3} \times \sqrt[4]{5^3}. \] Die benadering is ongeveer \( 7.037 \). Nou, om die kleinste getal te vind wat deelbaar is deur \( 32, 36, \) en \( 48 \), moet ons die grootste gemene veelvoud (GGMM) bereken. Die prime ontbinding van die getalle is: - \( 32 = 2^5 \) - \( 36 = 2^2 \times 3^2 \) - \( 48 = 2^4 \times 3^1 \) Neem die hoogste magte van elke priemgetal: \( 2^5 \) en \( 3^2 \). Dus is die GGMM: \[ GGMM = 2^5 \times 3^2 = 32 \times 9 = 288. \] Die kleinste getal wat deelbaar is deur \( 32, 36, \) en \( 48 \) is dus \( 288 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy