Question
upstudy study bank question image url

(9) \( -s^{3}-5 s t \) when \( s=-3 \) and \( t=-2 \) (10) \( \frac{a^{2}-b^{2}}{a-b} \) when \( a=5 \) and \( b=-9 \) when \( g=2, h=-3 \), and \( w=-7 \) \( g^{2}-3(h-g)-w^{2} \) (12) \( r^{3}-\left[q+(r-s)^{2}\right] \) when \( r=3, q=2 \), and \( s=5 \)

Ask by Osborne Lane. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

-3, -4, -30, 21

Solution

Sure, let's evaluate each of the given expressions with the specified values step by step. --- ### Problem (9) \[ -s^{3} - 5 s t \] **Given:** \( s = -3 \), \( t = -2 \) **Step-by-Step Evaluation:** 1. **Calculate \( s^{3} \):** \[ s^{3} = (-3)^{3} = -27 \] 2. **Calculate \( 5 s t \):** \[ 5 s t = 5 \times (-3) \times (-2) = 5 \times 6 = 30 \] 3. **Combine the results:** \[ -s^{3} - 5 s t = -(-27) - 30 = 27 - 30 = -3 \] **Answer:** \(-3\) --- ### Problem (10) \[ \frac{a^{2} - b^{2}}{a - b} \] **Given:** \( a = 5 \), \( b = -9 \) **Step-by-Step Evaluation:** 1. **Calculate \( a^{2} \) and \( b^{2} \):** \[ a^{2} = 5^{2} = 25 \] \[ b^{2} = (-9)^{2} = 81 \] 2. **Compute the numerator \( a^{2} - b^{2} \):** \[ a^{2} - b^{2} = 25 - 81 = -56 \] 3. **Compute the denominator \( a - b \):** \[ a - b = 5 - (-9) = 5 + 9 = 14 \] 4. **Divide the numerator by the denominator:** \[ \frac{a^{2} - b^{2}}{a - b} = \frac{-56}{14} = -4 \] **Answer:** \(-4\) --- ### Problem (11) \[ g^{2} - 3(h - g) - w^{2} \] **Given:** \( g = 2 \), \( h = -3 \), \( w = -7 \) **Step-by-Step Evaluation:** 1. **Calculate \( g^{2} \) and \( w^{2} \):** \[ g^{2} = 2^{2} = 4 \] \[ w^{2} = (-7)^{2} = 49 \] 2. **Calculate \( h - g \):** \[ h - g = -3 - 2 = -5 \] 3. **Multiply by 3:** \[ 3(h - g) = 3 \times (-5) = -15 \] 4. **Combine all parts:** \[ g^{2} - 3(h - g) - w^{2} = 4 - (-15) - 49 = 4 + 15 - 49 = 19 - 49 = -30 \] **Answer:** \(-30\) --- ### Problem (12) \[ r^{3} - \left[ q + (r - s)^{2} \right] \] **Given:** \( r = 3 \), \( q = 2 \), \( s = 5 \) **Step-by-Step Evaluation:** 1. **Calculate \( r^{3} \):** \[ r^{3} = 3^{3} = 27 \] 2. **Calculate \( r - s \):** \[ r - s = 3 - 5 = -2 \] 3. **Calculate \( (r - s)^{2} \):** \[ (r - s)^{2} = (-2)^{2} = 4 \] 4. **Compute the expression inside the brackets:** \[ q + (r - s)^{2} = 2 + 4 = 6 \] 5. **Subtract the bracketed term from \( r^{3} \):** \[ r^{3} - [q + (r - s)^{2}] = 27 - 6 = 21 \] **Answer:** \(21\) --- ### Summary of Answers 1. **Problem (9):** \(-3\) 2. **Problem (10):** \(-4\) 3. **Problem (11):** \(-30\) 4. **Problem (12):** \(21\) If you have any further questions or need more explanations, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the first expression, substitute \( s = -3 \) and \( t = -2 \) into \( -s^{3}-5st \): \[ -s^{3}-5st = -(-3)^{3}-5(-3)(-2) = -(-27) - 30 = 27 - 30 = -3. \] For the second expression \( \frac{a^{2}-b^{2}}{a-b} \) with \( a=5 \) and \( b=-9 \): \[ \frac{a^{2}-b^{2}}{a-b} = \frac{(5)^{2}-(-9)^{2}}{5-(-9)} = \frac{25-81}{5+9} = \frac{-56}{14} = -4. \] Now, calculating \( g^{2}-3(h-g)-w^{2} \) with \( g=2, h=-3 \), and \( w=-7 \): \[ g^{2}-3(h-g)-w^{2} = 2^{2}-3(-3-2)-(-7)^{2} = 4 - 3(-5) - 49 = 4 + 15 - 49 = 19 - 49 = -30. \] Lastly, for \( r^{3}-\left[q+(r-s)^{2}\right] \) with \( r=3, q=2 \), and \( s=5 \): \[ r^{3}-\left[q+(r-s)^{2}\right] = 3^{3}-\left[2+(3-5)^{2}\right] = 27 - [2 + (-2)^{2}] = 27 - [2 + 4] = 27 - 6 = 21. \] Thus, the results are: (9) -3, (10) -4, (11) -30, (12) 21.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy