(9) \( -s^{3}-5 s t \) when \( s=-3 \) and \( t=-2 \) (10) \( \frac{a^{2}-b^{2}}{a-b} \) when \( a=5 \) and \( b=-9 \) when \( g=2, h=-3 \), and \( w=-7 \) \( g^{2}-3(h-g)-w^{2} \) (12) \( r^{3}-\left[q+(r-s)^{2}\right] \) when \( r=3, q=2 \), and \( s=5 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To solve the first expression, substitute \( s = -3 \) and \( t = -2 \) into \( -s^{3}-5st \): \[ -s^{3}-5st = -(-3)^{3}-5(-3)(-2) = -(-27) - 30 = 27 - 30 = -3. \] For the second expression \( \frac{a^{2}-b^{2}}{a-b} \) with \( a=5 \) and \( b=-9 \): \[ \frac{a^{2}-b^{2}}{a-b} = \frac{(5)^{2}-(-9)^{2}}{5-(-9)} = \frac{25-81}{5+9} = \frac{-56}{14} = -4. \] Now, calculating \( g^{2}-3(h-g)-w^{2} \) with \( g=2, h=-3 \), and \( w=-7 \): \[ g^{2}-3(h-g)-w^{2} = 2^{2}-3(-3-2)-(-7)^{2} = 4 - 3(-5) - 49 = 4 + 15 - 49 = 19 - 49 = -30. \] Lastly, for \( r^{3}-\left[q+(r-s)^{2}\right] \) with \( r=3, q=2 \), and \( s=5 \): \[ r^{3}-\left[q+(r-s)^{2}\right] = 3^{3}-\left[2+(3-5)^{2}\right] = 27 - [2 + (-2)^{2}] = 27 - [2 + 4] = 27 - 6 = 21. \] Thus, the results are: (9) -3, (10) -4, (11) -30, (12) 21.