Answer
- **(b)** \(-8 x^{9} y^{6}\)
- **(c)** \(3^{8}\) or \(6561\)
- **(e)** \(\dfrac{16 x^{6} y^{4}}{25}\)
- **(f)** \(\dfrac{4 y^{4}}{25}\)
Solution
Let's simplify each of the given expressions step by step.
---
### **(b) \(\left(-2 x^{3} y^{2}\right)^{3}\)**
**Step-by-Step Simplification:**
1. **Apply the exponent to each factor inside the parentheses:**
\[
\left(-2\right)^3 \cdot \left(x^{3}\right)^3 \cdot \left(y^{2}\right)^3
\]
2. **Calculate each part:**
- \(\left(-2\right)^3 = -8\)
- \(\left(x^{3}\right)^3 = x^{9}\) (since \(3 \times 3 = 9\))
- \(\left(y^{2}\right)^3 = y^{6}\) (since \(2 \times 3 = 6\))
3. **Combine the results:**
\[
-8 x^{9} y^{6}
\]
**Final Answer:**
\[
-8 x^{9} y^{6}
\]
---
### **(c) \(\left(3^{3}\right)^{2} \cdot 3^{2}\)**
**Step-by-Step Simplification:**
1. **Simplify \(\left(3^{3}\right)^{2}\):**
\[
3^{3 \times 2} = 3^{6}
\]
2. **Multiply by \(3^{2}\):**
\[
3^{6} \cdot 3^{2} = 3^{6+2} = 3^{8}
\]
3. **Calculate \(3^{8}\) if desired:**
\[
3^{8} = 6561
\]
**Final Answer:**
\[
3^{8} \quad \text{or} \quad 6561
\]
---
### **(e) \(\left(\frac{-12 x^{3}}{15 y^{-2}}\right)^{2}\)**
**Step-by-Step Simplification:**
1. **Simplify the expression inside the parentheses:**
\[
\frac{-12 x^{3}}{15 y^{-2}} = \frac{-12 x^{3} \cdot y^{2}}{15} = \frac{-4 x^{3} y^{2}}{5} \quad (\text{simplifying } -12/15 = -4/5)
\]
2. **Apply the exponent to each factor:**
\[
\left(\frac{-4 x^{3} y^{2}}{5}\right)^{2} = \frac{(-4)^2 \cdot (x^{3})^2 \cdot (y^{2})^2}{5^2}
\]
3. **Calculate each part:**
- \((-4)^2 = 16\)
- \((x^{3})^2 = x^{6}\)
- \((y^{2})^2 = y^{4}\)
- \(5^2 = 25\)
4. **Combine the results:**
\[
\frac{16 x^{6} y^{4}}{25}
\]
**Final Answer:**
\[
\frac{16 x^{6} y^{4}}{25}
\]
---
### **(f) \(\left(\frac{10 y^{4}}{4 y^{6}}\right)^{-2}\)**
**Step-by-Step Simplification:**
1. **Simplify the expression inside the parentheses:**
\[
\frac{10 y^{4}}{4 y^{6}} = \frac{10}{4} \cdot y^{4-6} = \frac{5}{2} \cdot y^{-2}
\]
2. **Apply the exponent \(-2\) to the entire expression:**
\[
\left(\frac{5}{2} \cdot y^{-2}\right)^{-2} = \left(\frac{5}{2}\right)^{-2} \cdot \left(y^{-2}\right)^{-2}
\]
3. **Calculate each part:**
- \(\left(\frac{5}{2}\right)^{-2} = \left(\frac{2}{5}\right)^{2} = \frac{4}{25}\)
- \(\left(y^{-2}\right)^{-2} = y^{4}\) (since \(-2 \times -2 = 4\))
4. **Combine the results:**
\[
\frac{4 y^{4}}{25}
\]
**Final Answer:**
\[
\frac{4 y^{4}}{25}
\]
---
**Summary of Simplified Expressions:**
- **(b)** \(-8 x^{9} y^{6}\)
- **(c)** \(3^{8}\) or \(6561\)
- **(e)** \(\dfrac{16 x^{6} y^{4}}{25}\)
- **(f)** \(\dfrac{4 y^{4}}{25}\)
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution