\( \begin{array}{lllllllllll}5.32 & 5.27 & 2.63 & 3.16 & 3.42 & 2.31 & 6.76 & 5.13 & 4.78 & 4.37 & 2.77 \\ 1.87\end{array} \) The range is 4.89 dollars. (Type an integer or decimal rounded to two decimal places as needed.) The variance is \( \square \) (Type an integer or decimal rounded to two decimal places as needed.)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Extra Insights
To find the variance, we first need to calculate the mean (average) of the dataset. 1. **Calculate the Mean:** \[ \text{Mean} = \frac{5.32 + 5.27 + 2.63 + 3.16 + 3.42 + 2.31 + 6.76 + 5.13 + 4.78 + 4.37 + 2.77 + 1.87}{12} = \frac{43.68}{12} \approx 3.64 \] 2. **Calculate Each Deviation from the Mean and Square It:** \[ \begin{align*} (5.32 - 3.64)^2 & \approx 2.79 \\ (5.27 - 3.64)^2 & \approx 2.73 \\ (2.63 - 3.64)^2 & \approx 1.22 \\ (3.16 - 3.64)^2 & \approx 0.23 \\ (3.42 - 3.64)^2 & \approx 0.04 \\ (2.31 - 3.64)^2 & \approx 1.76 \\ (6.76 - 3.64)^2 & \approx 9.28 \\ (5.13 - 3.64)^2 & \approx 2.21 \\ (4.78 - 3.64)^2 & \approx 1.31 \\ (4.37 - 3.64)^2 & \approx 0.54 \\ (2.77 - 3.64)^2 & \approx 0.75 \\ (1.87 - 3.64)^2 & \approx 3.13 \\ \end{align*} \] 3. **Sum of Squared Deviations:** \[ 2.79 + 2.73 + 1.22 + 0.23 + 0.04 + 1.76 + 9.28 + 2.21 + 1.31 + 0.54 + 0.75 + 3.13 \approx 27.28 \] 4. **Calculate Variance:** \[ \text{Variance} = \frac{\text{Sum of Squared Deviations}}{N} = \frac{27.28}{12} \approx 2.27 \] Thus, the variance rounded to two decimal places is approximately **2.27**.