Question
upstudy study bank question image url

Factorise the expressions. a) \( 2 a^{2}+2 a d+2 a c-a b-b d-b c \) b) \( x^{3}-2 x^{2}-x y+x z-2 z+2 y \) c) \( 2 x^{2}+2 x y+x z+x z^{2}+y z+y z^{2} \) d) \( p^{2} x-2 q^{2} y-2 p q x+p q y \)

Ask by Dunn Fuentes. in South Africa
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) \(2a^2 + 2ad + 2ac - ab - bd - bc = (2a - b)(a + d + c)\) b) \(x^3 - 2x^2 - xy + xz - 2z + 2y = (x^2 - y + z)(x - 2)\) c) \(2x^2 + 2xy + xz + xz^2 + yz + yz^2 = (z^2 + z + 2x)(x + y)\) d) \(p^2x - 2q^2y - 2pqx + pqy = (px + qy)(p - 2q)\)

Solution

Factor the expression \( 2a^2+2ad+2ac-ab-bd-bc \). Factor the expression by following steps: - step0: Factor: \(2a^{2}+2ad+2ac-ab-bd-bc\) - step1: Rewrite the expression: \(2a^{2}+2ad+2ac-ba-bd-bc\) - step2: Factor the expression: \(2a\left(a+d+c\right)-b\left(a+d+c\right)\) - step3: Factor the expression: \(\left(2a-b\right)\left(a+d+c\right)\) Factor the expression \( x^3-2x^2-x*y+x*z-2*z+2*y \). Factor the expression by following steps: - step0: Factor: \(x^{3}-2x^{2}-xy+xz-2z+2y\) - step1: Rewrite the expression: \(x^{3}-2x^{2}-yx+2y+zx-2z\) - step2: Factor the expression: \(x^{2}\left(x-2\right)-y\left(x-2\right)+z\left(x-2\right)\) - step3: Factor the expression: \(\left(x^{2}-y+z\right)\left(x-2\right)\) Factor the expression \( 2x^2+2xy+xz+xz^2+yz+yz^2 \). Factor the expression by following steps: - step0: Factor: \(2x^{2}+2xy+xz+xz^{2}+yz+yz^{2}\) - step1: Rewrite the expression: \(z^{2}x+z^{2}y+zx+zy+2x^{2}+2xy\) - step2: Factor the expression: \(z^{2}\left(x+y\right)+z\left(x+y\right)+2x\left(x+y\right)\) - step3: Factor the expression: \(\left(z^{2}+z+2x\right)\left(x+y\right)\) Factor the expression \( p^2x-2q^2y-2pqx+pqy \). Factor the expression by following steps: - step0: Factor: \(p^{2}x-2q^{2}y-2pqx+pqy\) - step1: Rewrite the expression: \(p^{2}x-2pxq+qyp-2q^{2}y\) - step2: Factor the expression: \(px\left(p-2q\right)+qy\left(p-2q\right)\) - step3: Factor the expression: \(\left(px+qy\right)\left(p-2q\right)\) a) The factored form of the expression \(2a^2+2ad+2ac-ab-bd-bc\) is \((2a-b)(a+d+c)\). b) The factored form of the expression \(x^3-2x^2-x*y+x*z-2*z+2*y\) is \((x^{2}-y+z)(x-2)\). c) The factored form of the expression \(2x^2+2xy+xz+xz^2+yz+yz^2\) is \((z^{2}+z+2x)(x+y)\). d) The factored form of the expression \(p^2x-2q^2y-2pqx+pqy\) is \((px+qy)(p-2q)\).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To factorise the expressions, let's start with the first one: a) \( 2a^2 + 2ad + 2ac - ab - bd - bc \) First, we can group the terms: \( 2a^2 + 2ad + 2ac - ab - bd - bc = 2a(a + d + c) - b(a + d + c) = (2a - b)(a + d + c) \). b) \( x^3 - 2x^2 - xy + xz - 2z + 2y \) Grouping the terms gives us: \( x^3 - 2x^2 + x(z - y) - 2(z - y) = (x^3 - 2x^2) + (x - 2)(z - y) \). Now factoring out \( x^2 \) from the first group: \( x^2(x - 2) + (x - 2)(z - y) = (x - 2)(x^2 + z - y) \). c) \( 2x^2 + 2xy + xz + xz^2 + yz + yz^2 \) We can factor out common terms: Grouping gives us \( 2x^2 + 2xy + xz(1 + z) + y(z + z^2) \). This allows us to factor out \( 2 \) and \( y \): \( 2x(x + y) + z(x(1 + z) + y(1 + z)) = (2x + z)(x + y) \). d) \( p^2x - 2q^2y - 2pqx + pqy \) We can arrange terms slightly: Grouping gives us \( p^2x - 2pqx + pqy - 2q^2y = (p^2 - 2pq)x + (pq - 2q^2)y \). Further factoring gives us \( p(px - 2q) + q(y - 2q) \). Thus it becomes: \( (p + q)(px - 2q) \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy