Salinas Deleon
05/21/2024 · Middle School

2) Calculer puis écrire sans radical au dénominateur les expressions suivantes : \( C=\frac{\sqrt{3}}{\sqrt{3}+1}-\frac{\sqrt{3}-1}{\sqrt{3}+2}- \) et \( D=\left(\sqrt{5}+\frac{1}{\sqrt{5}}\right)^{2} \) 3) Soient \( x, y \) et \( z \) trois nombres réels strictement positifs. a) Montre que si \( x y+y z+x z=0 \) alors \( \frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=-3 \). b) Montrer que si \( x<y \) alors \( \sqrt{x+y+2 \sqrt{x y}}+\sqrt{x+y-2 \sqrt{x y}}=2 \sqrt{y} \) c) Montrer que si \( x \geq 2 \) alors \( (\sqrt{x+2 \sqrt{x-1}}+\sqrt{x-2 \sqrt{x-1}})^{2}=4(x-1) \)

Upstudy ThothAI Solution

Tutor-Verified Answer

Quick Answer

Here are the simplified answers: 1. **Expression C**: \[ C = \frac{13 - 7\sqrt{3}}{2} \] 2. **Expression D**: \[ D = \frac{36}{5} \quad \text{or} \quad 7\frac{1}{5} \quad \text{or} \quad 7.2 \] 3. **Problem 3**: - **Part a)** The given condition \( xy + yz + xz = 0 \) cannot be satisfied with positive real numbers \( x, y, z \). Therefore, the statement is not valid. - **Part b)** If \( x < y \), then: \[ \sqrt{x + y + 2\sqrt{xy}} + \sqrt{x + y - 2\sqrt{xy}} = 2\sqrt{y} \] - **Part c)** If \( x \geq 2 \), then: \[ \left( \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} \right)^2 = 4(x - 1) \] **Summary**: - Calculated and simplified expressions C and D. - Analyzed and concluded the validity of the statements in problem 3, providing the simplified forms where applicable.

Step-by-step Solution

Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions