Salinas Deleon
05/21/2024 · Middle School
2) Calculer puis écrire sans radical au dénominateur les expressions suivantes : \( C=\frac{\sqrt{3}}{\sqrt{3}+1}-\frac{\sqrt{3}-1}{\sqrt{3}+2}- \) et \( D=\left(\sqrt{5}+\frac{1}{\sqrt{5}}\right)^{2} \) 3) Soient \( x, y \) et \( z \) trois nombres réels strictement positifs. a) Montre que si \( x y+y z+x z=0 \) alors \( \frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=-3 \). b) Montrer que si \( x<y \) alors \( \sqrt{x+y+2 \sqrt{x y}}+\sqrt{x+y-2 \sqrt{x y}}=2 \sqrt{y} \) c) Montrer que si \( x \geq 2 \) alors \( (\sqrt{x+2 \sqrt{x-1}}+\sqrt{x-2 \sqrt{x-1}})^{2}=4(x-1) \)
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Here are the simplified answers:
1. **Expression C**:
\[
C = \frac{13 - 7\sqrt{3}}{2}
\]
2. **Expression D**:
\[
D = \frac{36}{5} \quad \text{or} \quad 7\frac{1}{5} \quad \text{or} \quad 7.2
\]
3. **Problem 3**:
- **Part a)** The given condition \( xy + yz + xz = 0 \) cannot be satisfied with positive real numbers \( x, y, z \). Therefore, the statement is not valid.
- **Part b)** If \( x < y \), then:
\[
\sqrt{x + y + 2\sqrt{xy}} + \sqrt{x + y - 2\sqrt{xy}} = 2\sqrt{y}
\]
- **Part c)** If \( x \geq 2 \), then:
\[
\left( \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} \right)^2 = 4(x - 1)
\]
**Summary**:
- Calculated and simplified expressions C and D.
- Analyzed and concluded the validity of the statements in problem 3, providing the simplified forms where applicable.
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit