Coles Barber
06/10/2024 · Primary School
2. Respecto de la base canónica de \( \mathbb{R}^{3} \) hallar las matrices de las siguientes aplicaciones lineales: a) giro de \( a \) grados con respecto al eje \( Z \) (o recta cuyo vector director es \( \vec{e}_{3}=(0,0,1) \) ) b) Simetrín con respecto a la recta \( x=0, y=0 \). c) Proyección sobre el plano \( x-y+z=0 \) d) Simetría con respecto a la recta \( (x, y, z)=t(1,1,1) \) c) Giro de 90 grados con respecto a la recta \( x+y=0, z=0 \).
Upstudy ThothAI Solution
Tutor-Verified Answer
Quick Answer
Here are the matrices for the given linear transformations in \( \mathbb{R}^{3} \):
a) **Giro de \( a \) grados con respecto al eje \( Z \)**:
\[
R_z(a) = \begin{pmatrix}
\cos(a) & -\sin(a) & 0 \\
\sin(a) & \cos(a) & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
b) **Simetría con respecto al plano \( xy \)**:
\[
S_{xy} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]
c) **Proyección sobre el plano \( x - y + z = 0 \)**:
\[
P = \begin{pmatrix}
\frac{2}{3} & \frac{1}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{pmatrix}
\]
d) **Simetría con respecto a la recta \( (1, 1, 1) \)**:
\[
S = \begin{pmatrix}
-\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3} & -\frac{1}{3}
\end{pmatrix}
\]
e) **Giro de 90 grados con respecto a la recta \( x + y = 0, z = 0 \)**:
\[
R_{xy}(90) = \begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Step-by-step Solution
Answered by UpStudy AI and reviewed by a Professional Tutor
UpStudy ThothAI
Self-Developed and Ever-Improving
Thoth AI product is constantly being upgraded and optimized.
Covers All Major Subjects
Capable of handling homework in math, chemistry, biology, physics, and more.
Instant and Accurate
Provides immediate and precise solutions and guidance.
Try Now
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit